First-principlesstudyofedgestatesofH-terminatedgraphiticribbons
YoshiyukiMiyamoto
FundamentalResearchLaboratories,NECCorporation,34Miyukigaoka,Tsukuba305-8501,Japan
KyokoNakada*andMitsutakaFujita
InstituteofMaterialsScience,UniversityofTsukuba,Tennodai,Tsukuba305-8573,Japan
͑Received28April1998;revisedmanuscriptreceived19August1998͒
Theexistenceoftheedgestatesofsingle-layeredH-terminatedgraphiticribbonspredictedbyNakadaetal.͓Phys.Rev.B,179͑1996͔͒hasbeenconfirmedbyfirst-principlescalculationswithintheframeworkofthelocal-densityapproximationandthepseudopotentials.Theedgestatesincasesofstackedribbonshavealsobeenexamined,andithasbeenfoundthattheexistenceoftheedgestatesisdependentonthestackingmanner.ThisphenomenoncanbeunderstoodfromtheelectronicstructuresofAA-andAB-stackedbulkgraphite.͓S0163-1829͑99͒14615-0͔
Breakageoftranslationalsymmetryofsolidstatesinacertaindirectiongenerateslocalizedstates.Forinstance,acleavedbulkcrystalgeneratessurfacestatesthathavetwo-dimensionalextensionsparalleltothecleavedsurface.Thesesurfacestatesoriginatefromthesurfacedanglingbondslo-catedattheFermilevel(EF).Whenallsurfacedanglingbondsareterminated,forinstance,byhydrogenatoms͑Hatoms͒,thesurfacestatesmoveawayfromEFandbecomeresonantstatesofbulkbands.Similarly,onecanimaginethatlocalizedstatesaregeneratedwhenagraphenesheetiscutintographiticribbons.Uponthecutting,agraphiticribbonlackstheoriginaltwo-dimensionalperiodicboundariesandthenewlygeneratedC-danglingbondsattheribbon’sedgecauselocalizedstatesatEF.WhenalldanglingbondsareterminatedbyHatoms,seeFig.1͑a͒,theirlevelsshouldmoveawayfromEF.͓Hereafter,theribbonslikeFig.1͑a͒arecalled‘‘zigzagribbons.’’͔
However,itwaspredictedthattheH-terminatedgraphiticribbonshavepeculiarlocalizedstatesattheribbons’edgeswithcorrespondingenergylevelsatEF.1TheselocalizedstatesoriginatefromorbitalsofH-terminatedCatomsextendingnormaltothegraphiticsheet.Theselocalizedstateswerecallededgestates.Theedgestatesappearwhenthewavevectorskalongtheribbonsareintheregionof2/3Ͻkрinaunitofinverseofaperiod(2.46Å).Thisfactcanbeanalyticallyderivedwhenonlythenearest-neighborhoppingsofelectronsaretakenintoaccount,1whichresultsinperfectcancelingofoff-sitehoppingsoftheorbitalsattheH-terminatedCsiteswithkas2/3Ͻkр.Sincethelocalizedfeatureoftheedgestatesisex-pectedtocauseremarkableelectron-electroncorrelation,someinterestingpropertiesofthezigzagribbonsareex-pected,e.g.,spinpolarization,realizationofone-dimensionalMott-Hubbard-typeinsulators,andsoon.
Thispredictionwasbasedonatight-bindingschemewithonlynearest-neighborhoppings,soitshouldbecheckedwhethertheedgestatesareseenwhenhoppingdistanceisincreased.Indeed,wehaveanexperienceofdisappearanceoftheedgestatewhenweartificiallyintroducethehoppingparameterforalongdistance.Therefore,aquestionhasarisenastowhethertheedgestatesareobtainedbyfully
0163-1829/99/59͑15͒/9858͑4͒/$15.00
PRB59
self-consistentcalculationsthatexpressoff-siteelectronhop-pingsforareasonablerange.Furthermore,theconsideredstructuresoftheribbonswererestrictedinthecaseofasinglelayer.Ontheotherhand,stackedlayersofribbonsarethoughttobemorerealisticinavailablesamples.Theexis-tenceoftheedgestatesshouldthereforebeexaminedforthestackedgeometryinwhichelectronhoppingsbetweenneigh-boringlayershavetobetakenintoaccount.
Inthispaper,weperformedthefirst-principlesband-structurecalculationforH-terminatedzigzagribbonswithintheframeworkofthelocal-densityapproximation͑LDA͒byusingpseudopotentialsandtheplane-wavebasissets.Wehavefoundthatthepredictededgestatesinsingle-layeredribbonsarewellreproducedinthepresentfirst-principlescalculations.Furthermore,wehaveexaminedtheedgestateswhenthezigzagribbonsarecondensedinamanneroftheAAstackingandtheABstackingofthebulkgraphite.TheedgestatescanexistonlyinthecaseoftheABstacking,inwhichhalfoftheCatomsofoneribbonarelocateddirectlyabovethecenterofeachhexagonontheneighboringrib-bons.ThisfactcanbeunderstoodfromtheenergybandstructureoftheAA-andAB-stackedbulkgraphite.Intherestofthispaper,detailsofthecomputationalconditionsandtheresultsareshown.
Wehaveperformedtheband-structurecalculationswithintheLDAinwhichtheexchangecorrelationenergyofmany-bodyelectronsaretreatedasafunctionalform2ofthechargedensity,whichwasfittedtothenumericalresultsofelectrongas.3Toexpresseffectsof1scoreelectronsofCatomsonvalenceelectrons,thenormconservingnonlocalpseudopo-tentialsaregeneratedbyusingaschemeofsoftcoreradius.4Onlythescomponentsareusedasthenonlocalpart.WhilefortheHatoms,thelocalpseudopotentialformedas1/r⌺2iCierf(r/rci)isusedwithrbeingadistancefrompro-ton.Thepresentparametersare1.0519andϪ0.0519forC1andC2,0.20702bohrand0.39993bohrforrc1andrc2,respectively.Acutoffenergyof40Ryisusedforplane-waveexpansionofvalencewavefunctions.Tomimicasituationofanisolatedzigzagribbon,weadoptedthree-dimensionalrepeatingcellsinwhichindividualribbons
9858
©1999TheAmericanPhysicalSociety
PRB59BRIEFREPORTS9859
FIG.1.͑a͒Atomicgeometryofazigzagribbon(Nϭ2ϳ6)terminatedbyHatoms.Shadedcirclesdenotecarbonatomswhilesmallercirclesdenotehydrogenatoms.͑b͒Bandstructureofthecorrespondinggeometry(Nϭ2ϳ6).ThepositionsofEFaresetas0eVindicatedbydottedlines.ArrowsindicatethestateshavinglocalizedC–Hcharacters.
areseparatedbyavacuumregion.Intheadoptedvacuumregion,theintervalsamongtheribbonsarekeptas8.5Åand6Åforedge-edgeandlayer-layerdistances,respec-tively.Theseintervalshavebeenfoundtobeenoughtopre-ventartificialinterribboninteractions.5Asforthek-pointsamplingforthemomentumspaceintegration,ninekpointsinthewedgeofthefirstBrillouinzone͑BZ͒areused.Ac-cordingtothecalculatedHellmann-Feynmanforces,theatomicgeometryisoptimizedtoachievethetotal-energyminimumwithin6arestrictionoftheplanarconfigurationoftheribbon.However,thegeometryoptimizationisfoundnottoconsiderablychangetheatomicstructurefromtheidealone,i.e.,aperfecthoneycombpatternwithC–Clengthof1.42ÅandHterminationswithC–Hlengthof1.01Å.IndeedtheC–Cbondlengthsareshortenedonlyby0.02ÅattheH-terminatedsite.Therefore,aqualitativefeatureofelectronicstructureislesssensitivetothegeometryoptimi-zation.
Figure1͑b͒showsbandstructuresofzigzagribbonsinFig.1͑a͒.Thewidthofeachribboncorrespondsto2ϳ6
arraysofzigzagC–Cchains.WecallthiswidthNϭ2ϳ6accordingtoRef.1.Aremarkablefeatureinthebandstruc-tureofaribbonwithNϭ6isthattwobandsmeetatthekvectorbeyondtwothirdsonthewayfrom⌫toXinthefirstBZ,where⌫ϭ0andXϭ/awithaϭ2.46Å͑ribbon’spe-riod͒.ThenthesebandsbecomenearlyflatuptokϭX,andthelocationofEFcorrespondstotheseflatbands.Whileinthethinnerribbons(Nϭ2ϳ4),flatbandsarenotseen.Thoseribbonsaretoonarrowtoseparatetheedgestatespenetratingfrombothedges.ThenearlyflatbandsseenintheribbonwithNϭ6suggestthattheelectrontransferoflongerrangesgivesnoremarkableeffectforwiderribbons.Theseresultsarequalitatively1
thesameasthatobtainedinthetight-bindingcalculations.Next,thewavefunction’scharacteroftheflatbandsinthecaseofNϭ6hasbeeninvestigated.WehavecalculatedtheoverlapbetweentheatomicvalencewavefunctionsofeachCsiteandtheBlochwavefunctionsoftheflatbands.TheBlochwavefunctionshavetheirmaximumamplitudeattheorbitalsofH-terminatedCsites,andthesecondmaximumamplitudeislocatedatsecondneighborCsites.Again,thesefeaturesagreewellwiththeformertight-bindingcalculations.1Fromthesewavefunction’scharacters,theseflatbandsshowninFig.1͑b͒withNϭ6canbeattributedtotheedgestates.
Theexistenceoftheedgestatesinsingle-layeredgra-phiticribbonshasthusbeenconfirmedbyperformingthefirst-principlescalculations.OnecanconsiderthattheedgestatesmayhavetheFermiinstabilitysincethereshouldbeasharppeakofthedensityofstatesatEreticalF.However,atheo-͑SSH͒discrepanciesmodelinvestigation7basedontheSu-Schrieffer-Heegerdeniedthispossibility.Sincetherearenose-riousintheresultsforhydrocarbonsystemsbetweenSSHmodelandthefirst-principlescalculation,weexpectthattheFermiinstabilitywillalsobedeniedinLDAcalculations.
Inadditiontotheexistenceoftheedgestate,onemaybeinterestedintheinfluenceofhydrogen1sstatesontheelec-tronicstructure,whichcanbeexpectedtocausehybridiza-tionwithC–Corbital.Wehavefoundthattherearesev-eraleigenstateshavingC–Hcharacters.ThestateswithconsiderableamplitudesattheC–HbondsaredenotedbyarrowsinFig.1͑b͒.Ontheotherhand,theC–H*͑anti-bonding͒statesarefoundfaraboveEF,whichareoutofthescaleinFig.1͑b͒.TheseC–H*stateshavenocontributionfortheconductingpropertiesoftheribbonssincetheenergylevelsareawayfromEFbymorethan5eV.TheyalsohavenoinfluenceontheedgestatesincetheorbitalsofC–Hand*extendparalleltotheribbonwhilethoseoftheedgestates(orbitals͒extendnormaltotheribbon.
Ournextinterestiswhethertheedgestatescanbeseeninstackedlayersofthezigzagribbons.Frompracticalview-points,realizationofasinglelayerofthezigzagribbonisratherhardcomparedtothatofamultilayeredsample.Wehaveperformedband-structurecalculationsofthestackedribbonsbyassumingtheAA-andtheAB-stackinggeom-etries.IntheAAstacking,allCatomsofoneribbonarelocateddirectlyaboveallCatomsontheneighboringrib-bons,whileintheABstacking,halfofCatomsofonerib-bonarelocateddirectlyabovethecenterofeachhexagonof
9860BRIEFREPORTSPRB59FIG.2.͑a͒ThefirstBrillouinzoneofAB-stackedzigzagrib-bonswithNϭ6andcorrespondingdirectionsinrealspace.⌫-XandZ-Mlinesarealongtheribbon’saxiswhile⌫-ZandX-Mlinesarealongthestackingdirection.͑b͒BandstructuresofAA-and͑c͒AB-stackedribbonswithNϭ6.ThepositionsEFaresetas0eVshownasdottedlines.
theneighboringribbons.Theinterlayerdistanceisassumedtobe3.34Å,whichisthesameasthatofthegraphite.HerewemustcommentontheLDAapproachindescrib-ingtheinterlayerinteractionofgraphite.ItiswidelythoughtthatthegraphiteinterlayerinteractionisdominatedbythevanderWaalsinteraction.Ifthisisthecase,theLDAcal-culationfailstoexpressthegraphiteinterlayerinteractionand͑maybe͒theelectronicbanddispersionalongthestack-ingdirection.However,SchabelandMartins8showedthat
theapplicationoftheLDAandpseudopotentialsschemefortheAB-stackedgraphitegivesreasonablevaluesofinterlayerbindingenergy,theoptimumdistance,andthecompressibil-ity,eachofwhichagreeswellwiththeexperimentalvaluescited͑inRef.foundincludingtobethe8.consistentdispersionFurthermore,withalongthethethecalculatedphotoemissionstackingbanddirectionstructuredata,which͒wasarealsocitedinRef.8.Sincetheabsolutevalueofthein-terlayerbindingenergyistiny͑fewtensmeVperatom͒,therestillremainsanargumentforthenumericalaccuracyinenergetics.Ontheotherhand,therearenoseriousproblemsoftheLDAindescribingenergy-bandstructuresofstackedgraphiteasfarasweknow.WehaveconfirmedthatourpresentcomputationalconditionwellreproducedthebandstructuresshowninRef.8aswellasRef.9.WethereforebelievethatthebanddispersionofthestackedribbonsisalsowelldescribedwithintheLDAscheme.Ourpresentcutoffenergyisnotsohighasthepreviousone,8soinsteadoftheoptimizationoftheinterlayerdistancewehavejustadjustedtheidealinterlayerdistanceof3.34Å.
Thebanddispersionofstackedribbonsbecomestwodi-mensionalindirectionsalongtheribbonandalongthestack-ing.Figure2͑a͒showsthetwo-dimensionalBZandthere-lateddirectionsinrealspace.͑OnlythecaseoftheABstackingisshownhere.͒ThecalculatedbandstructuresforAA-andAB-stackedribbonsareshowninFigs.2͑b͒and2͑c͒,respectively.TheassumedwidthoftheribbonsisNϭ6inbothofcases.theABThestacking.
flatbandslocatedatEFareseenonlyinthecaseWeagaininvestigatedthewavefunction’scharacterofthesenearlyflatbandsseenintheAB-stackedribbonsandfoundthesimilaritytotheedgestateofasinglelayerofazigzagribbon.IntheAB-stackedribbons,theedgestatesareindividuallylocalizedontheedgeofeithereachAlayeroreachBlayer.TherearenoremarkableelectronhoppingsbetweentheedgestatesofAandBlayersdespiteextensionofthecorrespondingwavefunctionsnormaltoeachlayer.However,thisfactisnotsosurprisingwhenwecomparethepresentresultswiththatoftheAB-stackedgraphitebulk,8,9whichalsohasverysmallbanddispersionaroundEK-HlineoftheBZ͑inthedirectionofthestackingFalong͒.Asmentionedbefore,theABstackingallowshalfofCatomstobeneighboredtothecenterofeachhexagoninthestackingdirection.Theedgestateofasingleribbonisessentiallycharacterizedbyanonbondingorbital(electrons͒whoseamplitudeismainlydistributedattheH-terminatededgesitesandtheirsecondneighbors.RememberthatsuchCsitesarelocatedeitherabovethecenterofthehexagonintheneighboringribbonordirectlyabovethenodalsiteoftheneighboringribbon.Theinterlayerhoppingsoftheelec-tronsonthosesitesarethussuppressed,whichresultsintheverysmalldispersionnearEstacking,allCatomsofoneF.WhileinthecaseoftheAAlayerarelocateddirectlyaboveallCatomsontheneighboringlayers,whichallowsthepearance-electronofhoppingstheflatbandsintheisdirectioninhibited.
ofthestacking,soap-Fromthepresentresults,weconcludethattheedgestatesexistinbothsingleandAB-stackedH-terminatedgraphiteribbons.Thesestatesareexpectedtobedetectedbyscanningtunnelingmicroscopy͑STM͒.WewouldliketopointoutherethatthesubstratewithoutelectronlevelsnearEFshould
PRB59BRIEFREPORTS9861
bechoseninSTMmeasurementinordertopreventhybrid-izationbetweentheedgestatesandthesubstratestatesnearEF.Ifthehybridizationtakesplace,thelocalizednatureoftheedgestatesmightbedestroyed.*Presentaddress:CollegeofScienceandEngineering,Aoyama
GakuinUniversity,1-1Morinosato-Aoyama,Atsugi,243-0123Japan.1
K.Nakada,M.Fujita,G.Dresselhaus,andM.S.Dresselhaus,Phys.Rev.B,179͑1996͒;M.Fujita,K.Wakabayashi,K.Nakada,andK.Kusakabe,J.Phys.Soc.Jpn.65,19202
͑1996͒.J.P.PerdewandA.Zunger,Phys.Rev.B23,5048͑1981͒.3
D.M.CeperleyandB.J.Alder,Phys.Rev.Lett.45,566͑1980͒.4
N.TroullierandJ.L.Martins,Phys.Rev.B43,1993͑1991͒.5
ThebandwidthsalongthekvectorsnormaltotheplaneandtheTheauthorsacknowledgeM.Saitoforhiscommentsandsuggestionsonthispaper.Allcalculationsweredonebyus-ingtheSX4SupercomputerSystemattheNECTsukubaResearchLaboratories.
edgeofthezigzagribbonhavebeenfoundtobelessthan20meV.6
Thesp2bondconfigurationholdsafterthegeometryoptimiza-tion.SincethisbondconfigurationisthemoststablechemicalconditionforCatoms,anynonplanargeometryseemstoberatherunlikely,butwehavenotexaminedthis.7
M.Fujita,M.Igami,andK.Nakada,J.Phys.Soc.Jpn.66,188
͑1997͒.M.C.SchabelandJ.L.Martins,Phys.Rev.B46,7185͑1992͒.9
J.-C.Charlier,J.-P.Michenaud,andX.Gonze,Phys.Rev.B46,4531͑1992͒.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务