您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页第3讲 竖式数字谜(一)

第3讲 竖式数字谜(一)

来源:爱问旅游网


第3讲 竖式数字谜(一)

这一讲主要讲加、减法竖式的数字谜问题。解加、减法数字谜问题的基本功,在于掌握好上一讲中介绍的运算规则(1)(2)及其推演的变形规则,另外还要掌握数的加、减的“拆分”。关键是通过综合观察、分析,找出解题的“突破口”。题目不同,分析的方法不同,其“突破口”也就不同。这需要通过不断的“学”和“练”,逐步积累知识和经验,总结提高解题能力。

例1 在右边的竖式中,A,B,C,D各代表什么数字?

解:显然,C=5,D=1(因两个数

字之和只能进一位)。

由于A+4+1即A+5的个位数为3,且必进一位(因为4>3),所以A+5=13,从而A=13-5=8。

同理,由7+B+1=12,即B+8=12,得到B=

12-8=4。

故所求的A=8,B=4,C=5,D=1。

例2 求下面各竖式中两个加数的各个数位上的数字之和:

分析与解:(1)由于和的个位数字是9,两个加数的个位数字之和不大于9+9=18,

所以两个加数的个位上的两个方框里的数字之和只能是9。(这是“突破口”)

再由两个加数的个位数之和未进位,因而两个加数的十位数字之和就是14。

故这两个加数的四个数字之和是9+14=23。

(2)由于和的最高两位数是19,而任何两个一位数相加的和都不超过18,因此,两个加数的个位数相加后必进一位。(这是“突破口”,与(1)不同)

这样,两个加数的个位数字相加之和是15,十位数字相加之和是18。

所求的两个加数的四个数字之和是15+18=33。

注意:(1)(2)两题虽然题型相同,但两题的“突破口”不同。(1)是从和的个位着手分析,(2)是从和的最高两位着手分析。

例3 在下面的竖式中,A,B,C,D,E各代表什么数?

分析与解:解减法竖式数字谜,与解加法竖式数字谜的分析方法一样,所不同的是“减法”。

首先,从个位减起(因已知差的个位是5)。4<5,要使差的个位为5,必须退位,于是,由14-D=5知,D=14-5=9。(这是“突破口”)

再考察十位数字相减:由B-1-0<9知,也要在百位上退位,于是有10+B-1-0=9,从而B=0。

百位减法中,显然E=9。

千位减法中,由10+A-1-3=7知,A=1。

万位减法中,由9-1-C=0知,C=8。

所以,A=1,B=0,C=8,D=9,E=9。

例4 在下面的竖式中,“车”、“马”、“炮”各代表一个不同的数字。请把这个文字式写成符合题意的数字式。

分析与解:例3是从个位着手分析,而这里就只能从首位着手分析。

由一个四位数减去一个三位数的差是三位数知,“炮”=1。

被减数与减数的百位数相同,其相减又是退位相减,所以,“马”=9。至此,我们已得到下式:

由上式知,个位上的运算也是退位减法,由11-“车”=9得到“车”=2。

因此,符合题意的数字式为:

例5 在右边的竖式中,“巧,填,式,谜”分别代表不同的数字,它们各等于多少?

解:由(4×谜)的个位数是0知,“谜”=0或5。

当“谜”=0时,(3×式)的个位数是0,推知“式”=0,与“谜”≠“式”矛盾。

当“谜”=5时,个位向十位进2。

由(3×式+2)的个位数是0知,“式”=6,且十位要向百位进2。

由(2×填+2)的个位数是0,且不能向千位进2知,“填”=4。

最后推知,“巧”=1。

所以“巧”=1,“填”=4,“式”=6,“谜”=5。

练习3

1.在下列各竖式的□中填上适当的数字,使竖式成立:

2.下列各竖式中,□里的数字被遮盖住了,求各竖式中被盖住的各数字的和:

3.在下列各竖式的□中填入合适的数字,使竖式成立:

4.下式中不同的汉字代表1~9中不同的数字,相同的汉字代表相同的数字。这个竖式的和是多少?

5.在下列各竖式的□中填入合适的数字,使竖式成立:

答案与提示练习3

1. (1) 7+265=1029;(2) 981+959=1940;(3) 99+ 903=1002; (4) 98+97+ 923=1118。

2.(1) 28;(2) 75。

3.(1) 23004-18501=4503;(2) 1056-9=67;(3) 24883-167=8094;(4) 9123-7684=1439。

4.9876321。

5.提示:先解上层数谜,再解下层数谜。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务