搜索
您的当前位置:首页基于深度神经网络的在线协作学习交互文本分类方法

基于深度神经网络的在线协作学习交互文本分类方法

来源:爱问旅游网
技术应用

甄园宜,郑兰琴

基于深度神经网络的在线协作学习交互文本分类方法现代远程教育研究,2020,32(3)

基于深度神经网络的在线协作学习交互文本分类方法*

□甄园宜

郑兰琴

——————————————————————————————————————————

摘要:有效的在线协作学习可显著改善在线教学质量,而对在线协作学习过程的实时分析、监控和干预是促进协作学习行为有效发生的关键,这有赖于对在线协作学习交互文本的精准分类。为避免人工编码和传统机器学习方法分类效果欠佳的不足,采用基于深度神经网络的卷积神经网络(CNN)、长短时记忆(LSTM)、双向长短时记忆(Bi-LSTM)等模型构建面向在线协作学习交互文本的分类模型,以Word2Vec作为词向量,提出了包含数据收集整理、文本标签标注、数据预处理、词嵌入、数据采样、模型训练、模型调参和模型评价等步骤的在线协作学习交互文本自动分类方法。以知识语义类、调节类、情感类、问题类和无关信息类等作为交互文本的类别划分,对51组大学生所产生的16047条在线协作学习交互文本进行分类后发现:Bi-LSTM模型的分类效果最好,其整体准确率为77.42%;各文本分类模型在问题类、无关信息类交互文本上的准确率较低;CNN模型和LSTM模型在问题类交互文本上的分类效果更佳。该方法在面向在线协作学习的知识掌握度评估、学习活动维持、消极学习情绪干预、学习预警与提示等方面具有较高的应用价值。

关键词:在线协作学习;深度学习;深度神经网络;交互文本;文本分类

中图分类号:G434文献标识码:A文章编号:1009-5195(2020)03-0104-09doi10.3969/j.issn.1009-5195.2020.03.012

——————————————————————————————————————————

(61907003);北京师范大学教育学部2019年度学科建设综合专项资金资助(2019QNJS010)。

作者简介:甄园宜,硕士研究生,北京师范大学教育学部教育技术学院(北京者),博士,副教授,硕士生导师,北京师范大学教育学部教育技术学院(北京

100875)。

*基金项目:国家自然科学基金青年项目“基于教育知识图谱的在线协作学习交互分析关键技术研究”

100875);郑兰琴(通讯作

一、引言

协作学习是指学生以小组形式参与,为达到共同的学习目标,在一定的激励机制下最大化个人和他人习得成果而互助合作的一切相关行为(黄荣怀,2003)。在线协作学习因不受时空限制、灵活有效的优势而成为在线学习的重要方式。其作为促进学生问题解决、知识建构和合作交流等高阶技能发展的重要手段,显著提高了在线教育的质量和效果(琳达·哈拉西姆等,2015)。Dillenbourg等(2007)指出,不应泛泛地研究“协作”,而应深入地研究“交互”,因为交互是理解协作学习本质的关键。目前,许多研究通过对在线交互文本的分类来分析学习者的交互行为、认知、情感倾向以及批判性思维。如柴阳丽等(2019)将在线协作学习交互文本分为信息共享、协商讨论、综合评论、新问题的产生、新问题的讨论、新问题的总结等六个类别,据.104.

此提出在线对话改进策略。冷静等(2018)把在线协作学习者的批判性思维编码为五类,即辨识、理解、分析、评价和创新,进而发现参与在线协作学习有助于学生批判性思维的提高。由此可见,对在线协作学习交互文本进行精准、高效地分类是提升协作学习效果的重要基础,且对于教师的实时反馈和干预也具有重要意义和价值。

然而,已有研究在对在线协作学习中的交互文本进行分类时,大多采用人工编码或传统机器学习的方法。例如,郝祥军等(2019)在对4844条在线协作学习交互文本进行分类时,首先对编码人员进行编码规则培训,而后采用两人一组背对背的方式进行编码,并对编码结果进行一致性检验,最后再通过协商确定有争议文本的编码。Zhang等(2019)选取一元语法(Unigrams)、二元语法(Bigrams)和文本长度等作为交互文本的特征,依据学习者贡献类型将在线协作学习交互文本划分为提问、引

用、立论和阐述等四类。由此可见,已有的在线协作学习交互文本分类方法的人工依赖性较强且在分类结果的产生上具有滞后性,还会因未能对交互过程文本进行语义层面的特征表示而导致分类准确率较低。因此,如何对在线协作学习交互文本进行精准分类是目前亟待解决的问题。

ing随着自然语言处理(NaturalLanguageProcess-有的书面形式和口头语形式的自然语言信息进行处,NLP)技术的日渐成熟,利用计算机对人类特理和加工的能力不断增强(冯志伟,1997)。研究表明,基于深度神经网络和预训练词向量的文本分类方法表现优良(宗成庆等,2019)。深度神经网络DeepNeuralNetwork,DNN)是有多个隐藏层的多层感知机(Multi-LayerPerceptron,MLP),由输入层、隐藏层和输出层组成(Seideetal.,2011)。深度神经网络能够从大量的原始数据中自动提取高层特征并有效表征输入空间,使得其在多个领域表现良好Szeetal.,2017)。因此,本研究采用深度神经网络构建在线协作学习交互文本分类模型,以对在线协作学习过程中产生的交互文本进行实时精准分类,进而为在线协作学习的实时分析和监控提供支撑。

二、文献综述

1.在线协作学习交互文本分类研究

对在线交互文本进行分类,不仅有助于快速了解学习者在进行交互时的言语特征、行为特征、交互模式和进展状况,还能够捕捉学习者在进行交互时的情感倾向和知识建构模式。在协作学习领域,相关研究主要围绕协作学习的言语交互类型和交互行为类型展开。例如Rafaeli等(1997)对协作学习过程中的言语交互类型进行分析后,将其分为单向交互、双向交互和互动式交互,其中单向交互是指一位学习者发出信息而其他学习者没有应答;双向交互是指一位学习者发出信息后其他学习者发出应答信息;互动式交互是指一位学习者发出信息后,其他学习者应答并引起下一轮的交互。此外,针对交互过程中的行为特征,也有研究从信息交流序列、知识建构和学习资源等视角出发,采用人工编码的方式对交互行为进行分类。例如Capponi等2010)基于交互行为的序列特征将协作学习中的交互行为分为信息交换、矛盾冲突、协商、达成共识、忽视他人意见、问题解决、帮助信息、教师评价等八类。Hou等(2011)把在线协作学习的知识

甄园宜,郑兰琴

基于深度神经网络的在线协作学习交互文本分类方法

技术现代远程教育研究,2020,32(3)

应用

建构行为分为知识相关类、任务协调类、社会交往类、跑题类等四种。Lee等(2011)收集11位研究生在为期6周的异步协作学习过程中产生的662条文本数据,将其分为社会协调、学习资源、学习资源整合利用等三类。

2.在线协作学习交互文本的分类方法研究

除采用人工编码的方法外,也有研究采用机器学习算法对在线协作学习文本进行分类。例如,Xie课程学习中产生的等(2018)基于574083名美国大学生在为期条讨论记录,使用逻辑回16周的归(LogisticRegression)和自适应增强AdaBoost)算法将其分为领导者信息和常规信息,以识别学生在学习过程中的领导力行为,基于这两个算法自动编码结果的72.2%习平台。OPOPLiu等F1值分别为68.6%和上持续(2017)4个月参与在线协作学习所产基于6650名K-12教师在学生的Frequency-Inverse17624条数据,以词频作为词向量进行文档表示,并使用朴素贝叶斯算法Documnt-Frequency逆向文件频率(,TF-IDFTerm)将其分为技术描述、技术分析、技术反思、个人描述、个人分析和个人反思等六类,以实现对教师反思思维等级的预测。Tao等(2018)开发了包含可视化协作学习交互文本自动分析功能的主意线索地图工具,可根据贡献类型,利用支持向量机、朴素贝叶斯等算法将交互文本自动分为提问、引用、理论描述和阐述等四类,以帮助学生监控任务进展、个人贡献度和协作网络关系,从而达到提升学习效果的目的。

综上所述,目前对在线协作学习交互文本的分类多采用人工编码和传统机器学习算法两种方式。在使用人工编码方式进行文本分类时,人工依赖性强且无法进行实时分类;在采用传统机器学习算法进行文本分类时,选取的文本特征较为单一,且难以捕捉文本上下文语义信息,导致文本分类准确率较低。

3.计算机领域文本分类技术研究现状

传统机器学习领域中的文本分类方法主要包括三个步骤,即特征工程、特征选择以及分类算法选择(Kowsarietal.,2019)。在特征工程中多选用词袋、词频-逆向文件频率、词性标注、名词短语Lewisetal.,1992)等作为文本特征。为剔除特征工程中的噪声,需要进行特征选择,所采用的主要方法有去停用词、L1正则化(Ng,2004)和互信息

.105.

(((((技术甄园宜,郑兰琴

应用

基于深度神经网络的在线协作学习交互文本分类方法现代远程教育研究,2020,32(3)

(Coveretal.,2012)等。常用的机器学习分类算法有

逻辑回归、朴素贝叶斯和支持向量机等。然而,传统机器学习中的文本分类方法存在数据稀疏、计算资源浪费大等问题。

深度学习算法因其能够避免由于数据稀疏、人工提取特征而导致的偏差,被广泛应用于文本分类任务中(Zhangetal.,2015)。基于深度学习算法的文本分类方法优化研究主要从词向量的表示和分类模型的构建两个方面对原有方法进行改进。例如,Kim个Word2Vec(2014)基于词向量,通过变化词向量的形式(即Google新闻预训练所获得的1000亿随机初始化、单通道传统Word2Vec、单通道训练后的Word2Vec、双通道词向量)构建了4个卷积神经网络(ConvolutionalNeuralNetworks,CNN)变体模型,并在电影评论(二分类)、斯坦福情感资料库(五分类)、斯坦福情感资料库(二分类)、主客观MPQA句库(二分类)、顾客商品评论(二分类)本45.0%分类两极评论(二分类)等计文本分类的特征和规则,构建了双向循环神经网到实89.6%验,之间。发现各Lai模等型分6个数据集上进行文、类结果的F1值在(2015)为避免人工设络(RecurrentNeuralNetwork,RNN)和最大池化层的组合模型,使用RNN模型提取文本的上下文信息,并基于最大池化层自动提取对文本分类起关键作用的词语,并在ACL公开数据集上进行了分类实验,其分类结果的AnthologyNetwork20-Newsgroups和SentimentTreebank、Fudan等Set4、个F1值在32.70%到93.12%之间。Li等(2018a)提出了基于优化的TF-IDF和加权Word2Vec的文本表示模型,并结合卷积神经网络对文本进行分类,实验语料为网易新闻语料库(六分类)的24000篇新闻和复旦文本分类语料库(八分类)的7691篇新闻,其分类结果的gas-Calderón产生的263万余条推特文本数据,使用等F1值分别为95.85%和96.93%。Var-(2019)基于波哥大市民在Word2Vec6个月内作为词向量,进行文本聚类以发现有共同话题的市民。Jang等(2019)基于12万余篇新闻文章和29万余条推特文本数据,使用Word2Vec作为词向量,CNN作为分类器对数据进行是否相关的二分类研究,并对两种词向量训练方式(即Bag-of-WordsContinuous较,结果表明使用和Skip-GramContinuous)的分类精度进行了比Bag-of-Words词向量训练方式的新闻文章分类结果的F1值为93.51%,.106.

而使用F1值为Skip-Gram训练方式的推特文章分类结果的此外,也有研究者通过构建更优的神经网络模90.97%。

型来提升文本分类模型的效果。例如,Joulin等(2016)提出采用FASText方法进行文本分类,结果表明其具有训练速度快、耗能较低等优点。Felbo等(2017)提出了基于Embedding层、双向长短时记Bi-LSTM忆(BidirectionalLongShort-TermMemory,Embedding)模型和注意力机制的量表征,再将向量输入到层和Bi-LSTM作为输入以得到文档的向DeepMoji模型,将softmax层以得到在各分类标签上的概率分布,进而获得分类结果。Yao等(works2019)节点的大型异构文本图,并利用,采用图卷积网络(GCN)模型,通过构建包含词节点和文档GraphConvolutionalNet-Co-occurrence信息对全局词语进行建模的方式,基于对节点的分类得到文本分类结果。

综上所述,学者们出于不同的研究目标开展了诸多有关在线协作学习交互文本分类的研究,其所

表1

在线协作学习交互文本的类别划分及示例

类别

子类编码子类描述示例

0-1阐述知识内涵

问题解决的策略包括算法式和启发式

比如说PS一朵漂亮的花,对0-2

进行举例

这个问题目标状态不明确,什0-么样的花算漂亮,这一类的问义类

知识语题算结构不良问题

0-3应用所学知识

先理清问题,然后从不同角度

解决问题

分析问题,提出不同方法,当

然要评估这些方法的可行性了0-4理解所学知识分析完问题应该来寻求可能的方法

1-1分工描述

总结者把总结的答案发出来吧

1-调节类1-2

目标描述(讨

论任务要求、接下来我们开始讨论第二个问

任务解释)题吧

1-3询问知识基础

大家都学过教育心理学么

对别人观点的

2-情感类

2-1肯定我觉得王婷说的对

2-2支持和同意嗯

2-3自我介绍大家好,我是邓君3-1表示疑惑

这个我不懂

3-问题类3-2与其他同学出

现意见分歧

等一下,我觉得不对

3-3对讨论进度提

出异议

太快了,上个问题还没解决

4-与协作学习任

信息类

无关4-1

务无关

好饿啊,待会去哪儿吃

使用的方法多为人工编码或逻辑回归、支持向量机等传统机器学习方法,这些方法存在人工依赖性强且分析结果滞后等不足。鉴于新兴的基于深度学习的自然语言处理技术在文本分类中的效果良好,本研究采用深度神经网络构建在线协作学习交互文本的自动分类模型,以期为学习者提供个性化的学习支持服务。

三、在线协作学习交互文本分类模型构建

1.分类标准

本研究基于郑兰琴(2015)对协作学习交互分析的研究,将在线协作学习交互文本分为知识语义类、调节类、情感类、问题类和无关信息类等五类。其具体的类别划分及示例如表1所示。

2.自动分类流程

本研究基于深度学习技术设计了如图1所示的在线协作学习交互文本自动分类流程,其主要包括数据收集整理、人工标注文本标签、数据预处理、Word2Vec参和模型评价等词嵌入、数据采样、模型训练、模型调8个步骤。

数据收集整理

人工标注文本标签

数据预处理Word2Vec词嵌入

数据采样

模型训练

(CNN、LSTM、Bi-LSTM)

模型调参

模型评价

图1在线协作学习交互文本自动分类流程

3.数据收集及标注

本研究招募51组大学生开展在线协作学习,通过学习平台自动记录学习过程中的交互文本,并将收集到的交互文本数据集按表1所示的类别标注为0、1、2、3、4等5类。例如,“问题解决策略主要包含算法式和启发式”属于知识语义类,类型序号标注为0;“这个我不懂,好难啊!”属于问题类,类型序号标注为3。

4.数据预处理

研究主要从以下两个方面对数据进行预处理。

甄园宜,郑兰琴

基于深度神经网络的在线协作学习交互文本分类方法

技术现代远程教育研究,2020,32(3)

应用

一是去除特殊字符和标点,即对交互文本数据集中的特殊字符、空白字符、标点符号等进行纠正或删除,以去除交互文本数据集中的噪声。二是进行分词操作,即利用Jieba分词库对交互文本进行分词操作。Jieba分词库是Python编程环境下被广泛使用的中文分词工具包,其主要的分词操作模式有精确模式、全模式和搜索引擎模式等三种。本研究采用精准模式对交互文本进行分词处理,即按照分词后词频最高的原则对句子做分词操作。

5.向量表示

本研究使用Mikolov等(2013)提出的Word2Vec作为词嵌入的词向量模型,将交互文本转换为计算机能够处理的向量表示方式。该词向量模型所生成的词向量含有语义信息,主要包含通过上下文预测中心词的ContinuousBag-of-Word模型和通过中心词预测上下文的Skip-Gram模型(Rong,2014),其所采用的层次Softmax和负采样算法可提升语义表征性能。

由于本研究的交互文本数据集较小,训练获得的词向量无法涵盖所有词语,因此采用中文类比推理数据集1348468CA8作为词向量(Lietal.,2018b),其共有收集到的交互文本数据集共有个中文词语,词向量的维度为184680个词,去重300。研究后的9079个词中有7500个是语料库中具有的,其余1579个未登录词经检查与语料分类无关,故使用全体向量的均值对其进行表示。

6.数据采样

由于本研究的交互文本数据集中的五类文本在样本量上存在较大差异,即协调类、问题类和无关信息类样本的数量较少,因此针对该文本数据集的分类问题属于不平衡数据分类问题。为避免由于训练集样本数据不平衡而产生分类误差,研究采用合成少数类过采样(Technique相结合的混合采样方式,即通过增加数据集中少数,SMOTESynthetic)与下采样(MinorityUnder-samplingOver-sampling)类的数量、减少数据集中多数类的数量以达到数据集的平衡(Chawlaetal.,2002)。该种采样方式既减少了语义信息的损失,又使得训练时间不至于过长Batistaetal.,2004)。

7.文本分类器模型

考虑到CNN模型在文本特征选取方面具有较大优势,而长短时记忆(LSTM)模型可保留文本的序列信息且双向长短时

LongShort-TermMemory,.107.

(技术甄园宜,郑兰琴

应用

基于深度神经网络的在线协作学习交互文本分类方法现代远程教育研究,2020,32(3)

记忆(BidirectionalLongShort-TermMemory,Bi-LSTM)模型可保留文本序列的上下文信息,因此,研究选取基于深度神经网络的CNN、LSTM和Bi-LSTM模型作为在线协作学习交互文本的分类器模型。

(1)CNN模型

于图像识别领域,其在图像分类任务中具有良好的CNN模型由LeCun等(1998)提出并首先被用表现。CNN模型的基本组成包括输入层、卷积层、池化层、全连接层和输出层,其中卷积层和池化层有多个且一般采用交替设置的架构,即一个卷积层后连接一个池化层,池化层后再连接一个卷积层。Kim(2014)最先将CNN模型应用于文本分类任务,并取得了较好的分类效果。

CNN模型的基本思想如下:假设词个词是一个k维向量;首先对句子进xi∈Rk,即句子中的第i行填充操作,填充后句子的长度变为n,则单个句子可表示为X1:n=x1⊕x2⊕…⊕xn,其中的⊕表示向量连接操作,即整个句子的句向量为所含的每个词的词向量拼接而成的向量;之后,使用卷积核w∈Rhk对句子进行二维卷积操作,即使用卷积得到的h个词产生一个新特征,例如卷积核w在词Xi:i+h-1上卷积生成特征Ci,Ci=f(w·xi:i+h-1+b),其中b∈R是函数的偏置值,f为非线性的激活函数;然后,设定卷积核w的步长为1,并将其应用于句子{x1:h,x2:h,…,xn-h+1:n}上,产生句子矩阵的特征图c,c=[c1,c2,…,cn-h+1];最后,遍历整个特征图并进行最大池化操作,找到最大的c值作为特征,=max{c}作为特征与特定的卷积核对应。

(2模型的一个变种,其因具有时序性且长期依赖问题Hochreiter)LSTM等模型

(1997)提出的LSTM模型是RNN较弱而被广泛应用于时间序列类模型中。LSTM模型的基本思想如下:假设时间点为t,在整个时间序列内输入的序列X={x1,x2,…,xt},即在文本任务中,X代表一条文本记录,每个时间点的输入表示一条文本记录经过分词后的每个词。在每个时间点t,模型的输入包括当前输入xt、上一时刻隐藏状态的输出ht-1和上一个记忆单元状态ct-1;模型的输出包括当前隐藏状态的输出ht和当前记忆单元状态ct。LSTM神经单元主要通过控制记忆单元状态ct对上一时刻和当前时刻的输入进行遗忘和输出,通过对遗忘门ft、输入门it和输出门ot等三个门控单元的设置,实现记忆单元ct对数据的输入和遗.108.

忘,以此获得分类结果。

(前计算时刻后文语义信息的缺陷而提出的改进模Bi-LSTM3)Bi-LSTM模型是为弥补模型

LSTM模型无法捕捉当型。Bi-LSTM模型通过连接反向的LSTM,使得模型既可以提取序列中当前时刻前文的语义信息,也可以提取序列中当前时刻后文的语义信息,从而实现对整个句子关键信息的提取(Schusteretal.,1997)。Bi-LSTM模型的每个LSTM单元的计算方法与LSTM模型一致,但其在得到前向和后向的单元输出后,要做一个矩阵连接的操作,在求和并取平均值后连接一个输出层以得到分类结果。

8.模型调参

sklearn在模型调参步骤中,主要使用了Python的索,即将欲调各参数的全部可能值放于一个字典工具包中的GridSearchCV函数进行网格搜中,然后遍历所有可能的参数组合,通过对各类参数设置情形下模型的准确率进行比较以获得最优的参数组合,进而将其确定为本研究各模型的实际参数。

四、实验与结果

1.实验数据集

本研究基于笔者所在实验室自主开发的在线协作学习平台进行数据收集,一共招募了51个小组参加在线协作学习,每组人数为4人,同一小组的成员在不同的物理空间内进行学习。每个小组的在线协作学习任务均相同,即围绕“教育心理学”课程中“问题解决的策略”章节展开讨论,具体包括问题解决的策略是什么、专家和新手解决问题有何差异、如何培养学生的问题解决能力、如何基于问题解决进行知识建构、结构不良问题的解决过程是什么等5个子任务。在开展协作学习活动之前,小组成员自由选择四种角色(协调者、解释者、总结者和信息搜集者)中的一种。每个小组在线协作学习的平均时长为2个小时。

在在线协作学习的过程中,51个小组共产生了16047条交互文本,每组平均约产生315条。为保证交互文本数据集服从真实在线协作学习情景下的数据分布以提高分类模型的泛化能力,本研究保留了全部原始数据。之后,将交互文本数据集分为训练集和测试集,即分别选取每类数据中的80%作为训练集,另20%作为测试集,再将五部分数据合

并作为完整的训练集和测试集。知识语义类、调节类、情感类、问题类和无关信息类等五类交互文本的分布情况如表2所示。

表2

实验数据集中各类交互文本的分布情况

文本类别训练集数量

测试集数量

总数量知识语义类调节类5620369214057025情感类23519234615问题类无关信息类

3975887761002939497合计

128363211195160479712.评价标准

本研究使用正确率(Precision)、召回率Recall)、F1值和准确率(Accuracy)作为在线协作学习交互文本分类效果的评价指标,将二分类的评价标准在多分类中进行延伸,即在每一个类别中将本类别看作正类,其他类别看作负类。具体计算公式如下所示。

(1)(2)(3)(4)

其中,TP表示正确分类的正类数量,FP表示错误分类的正类数量,TN表示正确分类的负类数量,FN表示错误分类的负类数量。Precision表示预测为正类样本的准确性,即被预测为正类的样本中实际正类的比例;Recall表示正类样本被正确预测的比例,即所有正类样本中被预测为正类的比例;F1表示在调和正确率和召回率之后,对分类器性能的综合评判;Accuracy表示分类器的整体准确率。

3.实验模型设置

CPUKeras、实验的计算机硬件环境为16G内存,操作系统采用64Intel位Ubuntu酷睿i7-8700。采用行了搭建,算法的“框架对三个基于深度神经网络的分类模型进epochs”和“batch_size”分别设置为200和64。模型其他具体参数设置如下:1)CNN模型。基于Kim(2014)等建立的CNN文本分类模型,使用64个大小为7×7的卷积核分别提取文本特征,经过最大池化层处理后,使用Softmax函数对在线协作学习文本进行分类。(2)

甄园宜,郑兰琴

基于深度神经网络的在线协作学习交互文本分类方法

技术现代远程教育研究,2020,32(3)

应用

LSTM学习(模型。使用256个10对在线协作学习文本进行分类(所采用的优化方法个神经单元的全连接层,最后使用“dropout”设置为0.2LSTM),之后连接一个含有神经单元进行语义Softmax函数为LSTMAdam连接一个神经单元进行文本上下文语义的学习,之后)。(3)Bi-LSTM模型。分别使用100个Softmax函数对在线协作学习文本进行分类(所采用的优化方法为Adam)。

4.实验结果与分析

利用训练集数据对上述三个文本分类器模型进行训练,获得的分类模型在测试集上进行分类测试的各项指标如表3所示。

表3

分类实验结果

类型划分

模型

指标知识语无关信

义类调节类情感类问题类

息类Precision87.0268.6734.19CNN

RecallF182.0684.4768.1569.4861.4568.4190.9978.7951.0020.51Accuracy25.64Precision82.98LSTM

Recall88.1175.3685.4762.9570.9574.9955.7468.6089.2955.0079.0755.0036.11AccuracyF155.0020.0025.74Precision87.3884.2773.2780.5175.9350.00Bi-LSTM

Recall85.8072.4872.8885.7183.0354.0035.8977.4251.9238.46AccuracyF137.13CNN由表3可知,Bi-LSTM模型的整体准确率较

类、调节类、情感类和无关信息类交互文本上的和LSTM模型高。Bi-LSTM模型在知识语义F11.33%值较另两个模型高,相较分别提高了、4.47%、4.24%和11.49%CNN,相较模型分别提高了LSTM模型Bi-LSTM0.33%、4.28%、3.96%和11.39%。但CNN3.08%模型和模型在问题类交互文本上的分类效果不如LSTM模型,其F1值分别相差3.82%和提取知识语义、调节类、情感类和无关信息类交互。上述结果表明,Bi-LSTM模型可以更好地文本的语义信息,而在问题类交互文本的语义信息提取上还有待改进。

TrainingBi-LSTMand模型在训练集和验证集中的准确率ValidationAccuracy)和Loss值TrainingandValidationLoss)的变化曲线如图2所示。可以看出,Bi-LSTM模型在训练过程中,Loss值逐渐缩小,模型准确率逐渐升高至0.97,模型训

.109.

((((技术甄园宜,郑兰琴

应用

基于深度神经网络的在线协作学习交互文本分类方法现代远程教育研究,2020,32(3)

练过程表现良好。

TrainingandValidationAccuracyTrainingandValidation0.91.40.81.2TrainingLoss

ValidationLossLoss

0.71.00.60.80.60.50.40.4

Training0

255075100ValidationAccuracy125150Accuracy

175200

0.2

0

255075100125150175200图2训练集和验证集的准确率和Loss值变化趋势图

图3为Bi-LSTM模型经归一化处理后的混淆矩阵分析结果,其横坐标代表预测标签(LabelPredictedLabel,即分类结果语义类、调节类、情感类、问题类和无关信息类等,即实际类型)),纵坐标代表正确标签(,坐标中的0-4分别代表知识True5表示该类交互文本的召回率。从混淆矩阵分析结果种类型的在线协作学习交互文本,矩阵中的数值可以看出,对角线上的分类预测情况较好,在知识语义类、调节类和情感类在线协作学习交互文本上的表现较优,该结果同样表明Bi-LSTM分类器具有较好的分类效果。

NormalizedConfusionMatrix

00.840.110.010.010.030.80.71

0.120.720.070.030.050.6lebaLeu20.020.060.860.010.050.5rT0.430.090.180.080.540.110.30.24

0.180.220.180.040.380.1

0

1

Predicted2

Label

3

4

图3混淆矩阵分析结果

五、讨论与结论

本文使用Word2Vec作为词向量,采用双向长短时记忆(Bi-LSTM)、长短时记忆(LSTM)、卷积神经网络(CNN)等三种深度神经网络模型构建文本分类器,提出了基于深度学习技术的在线协作学习交互文本分类方法。实验结果表明双向长短时记77.42%忆模型的分类效果最好,其整体准确率为类和无关信息类在线协作学习交互文本上的,在知识语义类、调节类、情感类、问题F1值分37.13%别达。各文本分类器在问题类交互文本上的准到85.80%、72.88%、83.03%、51.92%和.110.

确率较低,这主要是因为问题类交互文本的数量较少,即在本研究的在线协作学习环境中,涉及学习矛盾冲突和疑惑的交互文本数量较少致使分类模型在该类别的预测效果上不理想。此外,无关信息类交互文本的识别准确率也较低,这是由于无关信息类交互文本与协调类、知识语义类交互文本的特征类似,都是属于就某一话题所进行的讨论,且无关信息类话题的维度较广,故难以对其进行准确分类。由于调节类与情感类交互文本在特征上也呈现出一定程度的交叉,故调节类交互文本的分类效果也有待进一步提升。总之,问题类和无关信息类交互文本的数量较少,造成了数据集不平衡的问题,这影响了各类分类器的分类效果,本研究所采用的混合采样技术、多种分类模型也并不能很好地解决该问题。因此,如何解决在线协作学习交互文本分类中存在的不平衡数据集问题是后续研究的方向。

在线协作学习是一种重要的学习方式。对学习者在线协作学习过程中产生的交互文本进行精准地实时分类,是监控和评价大规模在线协作学习效果的基础,也是通过干预提升在线协作学习效果的前提。例如,依据对知识语义类交互文本的分析,能够对学习者的知识掌握情况进行评估;基于对协调类交互文本的分析可以有效地协调和干预学习过程,从而避免学习者由于任务协调不佳而导致的在线协作学习活动停滞和学习效果不佳等问题;利用问题类交互文本能够知晓学习者所遇到的问题和困难,以便教师及时地提供支持,为学生搭建脚手架,从而提高在线协作学习的效果;基于情感类交互文本能够对在线协作学习过程中出现的消极情绪进行干预;基于无关信息类交互文本可以对在线协作学习过程中出现的跑题现象进行预警和提示,让学习者更加专注地进行学习。因此,构建精准的在线协作学习交互文本的分类模型对于提升在线协作学习的效果具有重要意义和价值。

本研究主要存在以下三方面不足:一是研究中的交互文本数量较少且各类别交互文本的数量差距较大。在未来的研究中,将使用数据增强(AugmentationData问题,同时还需解决在线协作学习交互文本分类中)等方法解决交互文本数据集较小的现实存在的不平衡数据集问题。二是由于研究所使用的Word2Vec词向量相对固化,因而难以解决一词多意、依据上下文动态转换词向量的问题。后续研究将使用BERT、ERNIE等预训练语言模型生成

语义更加准确的词向量。三是研究所构建的神经网络模型的结构相对单一且较为简单。在未来的研究中,将尝试采用更为复杂有效的神经网络模型,并结合Attention、Transformer等算法来优化神经网络的结构,进一步提高在线协作学习交互文本分类的准确率。

参考文献:

践——在线教育质量的根本保证[1][加]琳达·哈拉西姆,肖俊洪[J].中国远程教育(2015).协作学习理论与实CSCL[2]柴阳丽,陈向东,荣宪举(2019).共享监控和调节视角下,(8):5-16,79.

习”课程为例在线异步对话分析及改进策略[3]冯志伟(1997).[J].电化教育研究自然语言的计算机处理,40(5):72-80,97.——以“研究性学26-27.

[J].中文信息,(4):法[M].[4]北京黄荣怀:人民教育出版社(2003).计算机支持的协作学习:13.

——理论与方学习者角色的动态转换[5]郝祥军,王帆,彭致君等[J].现代远距离教育(2019).群体在线学习过程分析,(3):38-48.:分析研究[6]冷静[J].,电化教育研究郭日发(2018).,39(2):26-31.

在线协作平台中批判性思维话语息流的视角[7]郑兰琴(2015).协作学习的交互分析方法——基于信[8]宗成庆[M].,夏睿北京,:张家俊人民邮电出版社(2019).文本数据挖掘:70.华大学出版社:53.

[M].北京:清Study[9]Batista,Learning

oftheBehaviorG.E.,ofPrati,SeveralR.C.,Methods&Monard,forBalancingM.C.(2004).A

Training

Data[J].

ACM

SIGKDD

Explorations

MachineNewsletter,(2010).[10]Capponi,6(1):20-29.PatternDiscoveryM.F.,Nussbaum,fortheM.,Design&Marshall,G.etal.

Computer-Supported

Collaborative

Learning

ofFace-to-FaceJournalofEducationalTechnology&Society,Activities[J].

(2002).[11]Chawla,[J].JournalSMOTE:ofArtificialSyntheticN.V.,Bowyer,IntelligenceMinorityK.Research,Over-SamplingW.,&13(2):40-52.

Hall,L.O.etal.[12]Cover,T.M.,&Thomas,J.A.(2012).16(1):321-357.TechniqueInformationTheory[M].Hoboken:JohnWiley&Sons:Elements54.of[13]Dillenbourg,P.,&Fischer,F.(2007).Computer-Sup-

Berufs-undportedCollaborative[14]Felbo,WirtschaftspLearning:B.,Mislove,ädagogik,TheA.,&21:111-130.

Basics[J].ZeitschriftfürUsingMillionsofEmojiOccurrencesSøgaard,toLearnA.etforDetectingSentiment,EmotionAny-Domainal.(2017).

[EB/OL].Representations[2019-12-12].https://arxiv.org/pdf/1708.00524.pdf.

andSarcasmShort-Term[15]Hochreiter,Memory[J].S.,Neural&Schmidhuber,Computation,9(8):1735-1780.

J.(1997).Long

甄园宜,郑兰琴

基于深度神经网络的在线协作学习交互文本分类方法

技术现代远程教育研究,2020,32(3)

应用

Knowledge[16]Hou,ConstructionH.T.,&Wu,BehavioralS.Y.(2011).PatternsAnalyzingofantheOnlineSocial

UsingSynchronousCollaborativeDiscussionInstructionalActivity

Education,anInstantMessagingTool:ACaseStudy[J].Computers&Convolutional[17]Jang,57(2):1459-1468.

B.,Kim,I.,&Kim,J.W.(2019).Word2Vec

ArticlesNeuralNetworksforClassificationofNews[18]Joulin,andTweets[J].A.,Grave,PLoSE.,ONE,&14(8):1-20.

BagBojanowski,P.etal.(2016).[2019-12-12].ofTrickshttps://arxiv.org/pdf/1607.01759.pdf.forEfficientTextClassification[EB/OL].pdf/1408.5882.pdf.Sentence[19]Kim,Classification[EB/OL].Y.(2014).Convolutional[2019-12-12].Neuralhttps://arxiv.org/

Networksfor10(4):67-75.

(2019).[20]Kowsari,TextClassificationK.,Meimandi,Algorithms:K.J.,A&Survey[J].Heidarysafa,Information,M.etal.

Convolutional[21]Lai,S.,Xu,L.,&Liu,K.etal.(2015).Recurrent

Twenty-NinthNeuralNetworksforTextClassification[C]//Texas,AAAIConferenceonArtificialIntelligence.Gradient-Based[22]LeCun,USA:2267-2273.

Y.,Bottou,L.,&Bengio,Y.etal.(1998).Proceedings[23]Lee,ofS.theLearningW.IEEE,Y.,86(11):2278-2324.

AppliedtoDocumentRecognition[J].Patterns&Tsai,C.C.(2011).Identifying

AsynchronousofCollaborative321-347.

Discussions[J].KnowledgeInstructionalExplorationScience,inOnline39(3):Clustered[24]Lewis,ProceedingsRepresentationsD.D.(1992).onaAnTextEvaluationCategorizationofPhrasalTask[C]//andRetrieval.ConferenceCopenhagen:onoftheResearch15thAnnualandDevelopmentInternationalinACMInformation

SIGIRClassification[25]Li,L.,Xiao,ACM:37-50.

Network[C]//Processing.InternationalBasedonL.,Word2vec&Jin,W.etal.(2018a).Text

ConferenceandonConvolutionalNeuralInformationNeuralReasoning[26]Li,Cham:[EB/OL].onS.,ChineseZhao,Springer:450-460.

Z.,Morphological&Hu,R.etandal.(2018b).SemanticAnalogical

[27]Liu,[2019-12-12].Q.,Zhang,https://arxiv.org/pdf/1805.06504.pdf.RelationsOnlineDiscussionDataforS.,Understanding&Wang,Q.etTeachersal.(2017).ReflectiveMining

243-254.

Thinking[J].IEEETransactionsonLearningTechnologies,11(2):Efficient[28]Mikolov,T.,Chen,K.,&Corrado,G.etal.(2013).OL].[2019-12-12].Estimation[29]Ng,A.Y.https://arxiv.org/pdf/1301.3781.pdf%5D.

ofWordRepresentationsinVectorSpace[EB/(2004).FeatureSelection,L1vs.L2

.111.

技术应用

the

甄园宜,郑兰琴

基于深度神经网络的在线协作学习交互文本分类方法现代远程教育研究,2020,32(3)

Regularization,andRotationalInvariance[C]//ProceedingsofLearning.Banff:ACM:78-86.

Twenty-First

International

Conference

on

[30]Rafaeli,S.,&Sudweeks,F.(1997).NetworkedInteractivity[31]Rong,X.(2014).Word2VecParameterLearningExplained

Machine

terizationofCitizensUsingWord2VecandLatentTopicAnaly-sisinaLargeSetofTweets[J].Cities,92:187-196.

LeadershipinPeer-ModeratedOnlineCollaborativeLearningThroughTextMiningandSocialNetworkAnalysis[J].TheInter-netandHigherEducation,38:9-17.

[37]Xie,K.,DiTosto,G.,&Lu,L.etal.(2018).Detecting

[J].JournalofComputer-MediatedCommunication,2(4):243.[EB/OL].[2019-12-12].https://arxiv.org/pdf/1411.2738.pdf.cessing,45(11):2673-2681.

RecurrentNeuralNetworks[J].IEEETransactionsonSignalPro-

[32]Schuster,M.,&Paliwal,K.K.(1997).Bidirectional[33]Seide,F.,Li,G.,&Yu,D.(2011).ConversationalSpeech

NetworksforTextClassification[C]//ProceedingsoftheAAAICon-ferenceonArtificialIntelligence.Hawaii:AAAI:7370-7377.

[38]Yao,L.,Mao,C.,&Luo,Y.(2019).GraphConvolutional[39]Zhang,J.,&Chen,M.(2019).IdeaThreadMapper:De-

TranscriptionUsingContext-DependentDeepNeuralNetworks[C]//SpeechCommunicationAssociation.Florence,Italy:ISCA:437-440.[J].ProceedingsoftheIEEE,105(12):2295-2329.nity[J].InstructionalScience,46(4):563-592.

[34]Sze,V.,Chen,Y.H.,&Yang,T.J.etal.(2017).Effi-[35]Tao,D.,&Zhang,J.(2018).FormingSharedInquiry

signsforSustainingStudent-DrivenKnowledgeBuildingAcrossClassrooms[C]//13thInternationalConferenceonComputerSup-portedCollaborativeLearning.Lyon:ISLS:144-151.

PoissonFactorizationModelforCold-StartLocalEventRecom-mendation[C]//Proceedingsofthe21thACMSIGKDDInterna-Sydney:ACM:1455-1464.

[40]Zhang,W.,&Wang,J.(2015).ACollectiveBayesian

Proceedingsofthe12thAnnualConferenceoftheInternationalcientProcessingofDeepNeuralNetworks:ATutorialandSurveyStructurestoSupportKnowledgeBuildinginaGrade5Commu-[36]Vargas-Calderón,V.,&Camargo,J.E.(2019).Charac-

tionalConferenceonKnowledgeDiscoveryandDataMining.

收稿日期2020-01-10责任编辑谭明杰

AStudyontheClassificationModelofInteractiveTextsinOnlineCollaborativeLearning

BasedonDeepNeuralNetworkZHENYuanyi,ZHENGLanqin

fieldofE-learning.Itisverycrucialtoconductingreal-timeanalysis,monitoring,andinterventiontopromotetheoccurrenceofonlinecollaborativelearning,whichheavilyreliesonthepreciseclassificationofinteractivetexts.AninteractivetextclassificationmodelofonlinecollaborativelearningbasedondeepneuralnetworkisproposedinthisclassificationmodeladoptedWord2Vecasthewordvectoranditincludeseightsteps,namelycollectingdata,textevaluating.Inthepresentstudy,51groupsofundergraduatesareengagedinonlinecollaborativelearningandthenBi-LSTM)areusedforclassificationexperiments.TheresultsshowthatBi-LSTMachievedthebestclassification16047validtextdataareobtained.Theseinteractivetextsaredividedintofivecategories:knowledgesemantic,resultsandtheoverallaccuracyis77.42%.However,thethreeclassifiersachievedthelowaccuracyintermsofproblemscategoryandirrelevantinformationcategory.TheCNNandLSTMachievedthehigheraccuracythanBi-LSTMregardingtheclassificationofproblemstexts.Thismethodisverysignificantandvaluableintermsofevaluatingknowledgeacquisition,maintaininglearningactivity,interveninginnegativeacademicemotions,andlearningalarminginonlinecollaborativelearning.Classification.112.

Abstract:Theuseofonlinecollaborativelearningcansignificantlyimprovetheinstructionalqualityinthe

studytoovercometheinsufficientclassificationofmanualcodingandtraditionalmachinelearning.Thisannotation,datapreprocessing,wordembedding,datasampling,modeltraining,modelrefining,andmodelregulation,emotionalinformation,problemsandirrelevantinformation.Thethreeclassifiers(CNN,LSTM,

Keywords:OnlineCollaborativeLearning;DeepLearning;DeepNeuralNetwork;InteractiveText;Text

因篇幅问题不能全部显示,请点此查看更多更全内容

Top