您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页第二十三章 旋转教案

第二十三章 旋转教案

来源:爱问旅游网
九年级教案

第二十三章 旋转

23.1 图形的旋转(1)

第一课时

教学内容

1.什么叫旋转?旋转中心?旋转角? 2.什么叫旋转的对应点? 教学目标

了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题. 重难点、关键

1.重点:旋转及对应点的有关概念及其应用. 2.难点与关键:从活生生的数学中抽出概念. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′. 3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.

(3)什么叫轴对称图形? 二、探索新知

我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1、2两题有什么共同特点呢?

共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

1

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A、B分别移动到什么位置? 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置. 例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形. (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角.

(3)指出,经过旋转,点A、B、C、D分别移到什么位置? (老师点评)

(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.

最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的. 三、巩固练习

教材P65 练习1、2、3. 四、应用拓展

例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正

1方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动,

4•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.

分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.

五、归纳小结(学生总结,老师点评) 本节课要掌握:

1.旋转及其旋转中心、旋转角的概念. 2.旋转的对应点及其它们的应用. 六、布置作业

1.教材 复习巩固1、2、3.

23.1 图形的旋转(2)

第二课时

2

教学内容

1.对应点到旋转中心的距离相等.

2.对应点与旋转中心所连线段的夹角等于旋转角. 3.旋转前后的图形全等及其它们的运用. 教学目标

理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.

先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质. 重难点、关键

1.重点:图形的旋转的基本性质及其应用.

2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质. 教学过程 一、复习引入

(学生活动)老师口问,学生口答.

1.什么叫旋转?什么叫旋转中心?什么叫旋转角? 2.什么叫旋转的对应点? 3.请独立完成下面的题目.

如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?

(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的. 二、探索新知

上面的解题过程中,能否得出什么结论,请回答下面的问题: 1.A、B、C、D、E、F到O点的距离是否相等?

2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?

3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗? 老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验. 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.

(分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1.线段OA与OA′,OB与OB′,OC与OC′有什么关系? 2.∠AOA′,∠BOB′,∠COC′有什么关系? 3.△ABC与△A′B′C′形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•

3

即对应点与旋转中心所连线段的夹角称为旋转角.

3.△ABC和△A′B′C′形状相同和大小相等,即全等. 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等.

例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示. 解:(1)连结CD

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD (3)在射线CE上截取CB′=CB 则B′即为所求的B的对应点. (4)连结DB′

则△DB′C就是△ABC绕C点旋转后的图形.

1 例2.如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋

4转图形.

(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?

(4)如果连结EF,那么△AEF是怎样的三角形?

分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A点.

(2)∵△ABF是由△ADE旋转而成的 ∴B是D的对应点

∴∠DAB=90°就是旋转角

1 (3)∵AD=1,DE=

4117 ∴AE=12()2=

44 ∵对应点到旋转中心的距离相等且F是E的对应点

17 4 (4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.

三、巩固练习: 教材P64 练习1、2. 四、应用拓展

例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.

∴AF= 4

五、归纳小结(学生总结,老师点评)

本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用. 六、布置作业

1.教材 复习巩固4 综合运用5、6.

23.1 图形的旋转(3)

第三课时

教学内容:选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案. 教学目标:理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案. 重难点、关键

1.重点:用旋转的有关知识画图.

2.难点与关键:根据需要设计美丽图案. 教具、学具准备 小黑板 教学过程 一、复习引入 1.(学生活动)老师口问,学生口答.

(1)各对应点到旋转中心的距离有何关系呢?

(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系? (3)两个图形是旋转前后的图形,它们全等吗? 2.请同学独立完成下面的作图题.

如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.

(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′. 二、探索新知

从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究. 1.旋转中心不变,改变旋转角

画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.

2.旋转角不变,改变旋转中心

画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图

5

形.

因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.

例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分

别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.

分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可. 解:(1)连结OA

(2)以O点为圆心,OA长为半径旋转45°,得A. (3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.

(4)按菊花一叶图案画出各菊花一叶. 那么所画的图案就是绕O点旋转后的图形.

例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?

老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.

三、巩固练习 教材P65 练习. 四、应用拓展

例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形. 分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案. 解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;

(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;

(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′; (4)所作出的图案就是所求的图案. 五、归纳小结(学生归纳,老师点评) 本节课应掌握:

1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案; 2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点─

6

─线的端点、角的顶点、圆的圆心等. 六、布置作业

1.教材P67 综合运用7、8、9.

23.2 中心对称(1)

第一课时

教学内容

两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题. 教学目标

了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.

复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题. 重难点、关键

1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题. 2.难点与关键:从一般旋转中导入中心对称. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入

请同学们独立完成下题.

如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法. 老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.

作法:(1)连结OA、OB、OC、OD;

(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD; (3)分别截取OE=OB,OF=OC; (4)依次连结DE、EF、FD;

即:△DEF就是所求作的三角形,如图所示.

二、探索新知

问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题: 1.以O为旋转中心,旋转180°后两个图形是否重合?

2.各对称点绕O旋转180°后,这三点是否在一条直线上?

7

老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答. (1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.

(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.

分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.

(3)旋转后的对应点,便是中心的对称点. 解:作法:(1)延长AD,并且使得DA′=AD (2)同样可得:BD=B′D,CD=C′D

(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.

答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.

(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.

例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.

分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可. 解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′) (2)连结A′B′、A′C′.

则△A′B′C′为所求作的三角形,如图所示.

8

三、巩固练习

教材P74 练习2. 四、应用拓展

例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.

(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.

(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.

分析:(1)∵BC=4,AC=4

∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且BC′=1 (2)∵平移的距离为x,∴BC′=4-x 五、归纳小结(学生归纳,老师点评)

本节课应掌握:1.中心对称及对称中心的概念;2.关于中心的对称点的概念及其运用. 六、布置作业

1.教材 练习1.

23.2 中心对称(2)

第二课时

教学内容

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形. 教学目标

理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.

复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质. 重难点、关键

1.重点:中心对称的两条基本性质及其运用.

2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质. 教学过程 一、复习引入

(老师口问,学生口答)

1.什么叫中心对称?什么叫对称中心? 2.什么叫关于中心的对称点?

9

3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论. (每组推荐一人上台陈述,老师点评)

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形 (1)作△ABC一顶点为对称中心的对称图形; (2)作关于一定点O为对称中心的对称图形. 第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.

(1) (2) 从图1中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段. 下面,我们就以图2为例来证明这两个结论. 证明:(1)在△ABC和△A′B′C′中, OA=OA′,OB=OB′,∠AOB=∠A′OB′ ∴△AOB≌△A′OB′ ∴AB=A′B′

同理可证:AC=A′C′,BC=B′C′ ∴△ABC≌△A′B′C′ (2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.

解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.

10

(2)同样画出点B和点C的对称点E和F. (3)顺次连结DE、EF、FD.

则△DEF即为所求的三角形. 例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

二、巩固练习 教材P70 练习. 三、应用拓展

例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.

分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.

解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.

∴AO=AO′,OC=O′B

又∵∠OAO′=60°,∴△AO′O为等边三角形. ∴AO=OO′

在△BOO′中,OO′+OB>BO′ 即OA+OB>OC

四、归纳小结(学生总结,老师点评) 本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用. 五、布置作业

1.教材 复习巩固1 综合运用6、7.

23.2 中心对称(3)

第三课时

11

教学内容

1.中心对称图形的概念.

2.对称中心的概念及其它们的运用. 教学目标

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用. 重难点、关键

1.重点:中心对称图形的有关概念及其它们的运用.

2.难点与关键:区别关于中心对称的两个图形和中心对称图形. 教具、学具准备 小黑板、三角形 教学过程 一、复习引入 1.(老师口问)口答:关于中心对称的两个图形具有什么性质? (老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形. 2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

AOBAO (2)延长AO使OC=AO, 延长BO使OD=BO, 连结CD

则△COD为所求的,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.

上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就

AD成平行四边形,如图所示.

O

12

BC ∵AO=OC,BO=OD,∠AOB=∠COD ∴△AOB≌△COD ∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与 它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形. 老师点评:老师边提问学生边解答.

(学生活动)例2:请说出中心对称图形具有什么特点? 老师点评:中心对称图形具有匀称美观、平稳.

例3.求证:如图任何具有对称中心的四边形是平行四边形.

AOD

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD是平行四边形. 三、巩固练习 教材P72 练习. 四、应用拓展

例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.

分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积. 解:连接AF,

∵点C与点A重合,折痕为EF,即EF垂直平分AC.

∴AF=CF,AO=CO,∠FOC=90°,又四边形ABCD为矩 形,∠B=90°,AB=CD=3,AD=•BC=4

设CF=x,则AF=x,BF=4-x,

由勾股定理,得AC2=BC2+AB2=52

15 ∴AC=5,OC=AC=

22222

∵AB+BF=AF ∴32+(4-x)=2=x2

25 ∴x=

8

13

BC ∵∠FOC=90°

25251515)-()2=()2 OF=

28881515 同理OE=,即EF=OE+OF=

84 五、归纳小结(学生归纳,老师点评) 本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题. 六、布置作业

1.教材 综合运用5 23.2 中心对称(4)

第四课时

教学内容

两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y)及其运用. 教学目标

理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,ly)关于原点的对称点为P′(-x,-y)的运用. A 复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重难点、关键

1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.

2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入

(学生活动)请同学们完成下面三题.

1.已知点A和直线L,如图,请画出点A关于L对称的点A′.

2.如图,△ABC是正三角形,以点A为中心,把△ADC顺时针旋转60°,画出旋转后的图形.

3.如图△ABO,绕点O旋转180°,画出旋转后的图形.

老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知 y (学生活动)如图23-74,在直角坐标系中,已知A

4(-3,1)、B(-4,0)、C(0,3)、•D(2,2)、E(3,-3)、

3CF(-2,-2),作出A、B、C、D、E、F点关于原点O的中D2A心对称点,并写出它们的坐标,并回答:这些坐标与已知

1B点的坐标有什么关系?

-4-3-2-1O123x ∴OF2=FC2-OC2=(

-1 14

-2-3

老师点评:画法:(1)连结AO并延长AO (2)在射线AO上截取OA′=OA

(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″. ∵△AD′O与△A′D″O全等 ∴AD′=A′D″,OA=OA′ ∴A′(3,-1)

同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标. (学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 提问几个同学口述上面的问题.

老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P(x,y)关于原点O的对称点P′(-x,-y).

两个点关于原点对称时,它们的坐标符号相反,

即点P(x,y)关于原点O的对称点P′(-x,-y).

例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.

y4321-4-3-2-1-1BOA123x-2-3

分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′、B′即可.

解:点P(x,y)关于原点的对称点为P′(-x,-y), 因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为A′(1,0),B(-3,0). 连结A′B′.

则就可得到与线段AB关于原点对称的线段A′B′. (学生活动)例2.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.

老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABCy中的A、B、C三点关于原点的对称点,•依次连结,便可

4得到所求作的△A′B′C′.

3 三、巩固练习

2B 教材 练习.

A1-4-3-2-1O123x 15

-1-2-3 四、应用拓展

例3.如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1. (1)在图中画出直线A1B1.

(2)求出线段A1B1中点的反比例函数解析式.

(3)是否存在另一条与直线AB平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.

分析:(1)只需画出A、B两点绕点O顺时针旋转90°得到的点A1、B1,连结A1B1.

k (2)先求出A1B1中点的坐标,设反比例函数解析式为y=代入求k.

x (3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A1B1与双曲线是相切的,只要我们通过A1B1的线段作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线. 解:(1)分别作出A、B两点绕点O顺时针旋转90°得到的点A1(1,0),B1(2,0),连结A1B1,那么直线A1B1就是所求的.

1 (2)∵A1B1的中点坐标是(1,)

2k 设所求的反比例函数为y=

x1k1 则=,k=

2121 ∴所求的反比例函数解析式为y=2

x (3)存在.

∵设A1B1:y=k′x+b′过点A1(0,1),B1(2,0)

b`11b` ∴ ∴1

k`02kb21 ∴y=-x+1

2 把线段A1B1作出与它关于原点对称的图形就是我们所求的直线. 根据点P(x,y)关于原点的对称点P′(-x,-y)得: A1(0,1),B1(2,0)关于原点的对称点分别为A2(0,-1),B2(-2,0) ∵A2B2:y=kx+b

11bk ∴ ∴2

02k`bb11 ∴A2B2:y=-x-1

2

16

11 下面证明y=-x-1与双曲线y=2相切

2x1yx11212x+2=-1  -x-1=12xx2yx2

x+2x+1=0,b2-4ac=4-4×1×1=0

11 ∴直线y=-x-1与y=2相切

2x ∵A1B1与A2B2的斜率k相等 ∴A2B2与A1B1平行

1 ∴A2B2:y=-x-1为所求.

2 五、归纳小结(学生总结,老师点评) 本节课应掌握:

两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),•关于原点的对称点P′(-x,-y),及其利用这些特点解决一些实际问题. 六、布置作业

1.教材 复习巩固3、4. 23.2 中心对称(4)

第四课时

教学内容

两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y)及其运用. 教学目标

理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)l关于原点的对称点为P′(-x,-y)的运用. A 复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重难点、关键

1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.

2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入

(学生活动)请同学们完成下面三题.

1.已知点A和直线L,如图,请画出点A关于L对称的点A′.

2.如图,△ABC是正三角形,以点A为中心,把△ADC顺时

17

针旋转60°,画出旋转后的图形.

3.如图△ABO,绕点O旋转180°,画出旋转后的图形.

老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知

y (学生活动)如图23-74,在直角坐标系中,已知A(-3,

1)、B(-4,0)、C(0,3)、•D(2,2)、E(3,-3)、F(-2,43C-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并

2写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关A1系? B-4-3-2-1O1

-1 老师点评:画法:(1)连结AO并延长AO -2 (2)在射线AO上截取OA′=OA -3 (3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.

∵△AD′O与△A′D″O全等 ∴AD′=A′D″,OA=OA′ ∴A′(3,-1)

同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标. (学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 提问几个同学口述上面的问题.

老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P(x,y)关于原点O的对称点P′(-x,-y).

两个点关于原点对称时,它们的坐标符号相反,

即点P(x,y)关于原点O的对称点P′(-x,-y).

例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.

y4321-4-3-2-1D23xB123-2O-1Ax-3

分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′、B′即可.

解:点P(x,y)关于原点的对称点为P′(-x,-y), 因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为

18

A′(1,0),B(-3,0). 连结A′B′.

则就可得到与线段AB关于原点对称的线段A′B′. (学生活动)例2.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.

老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,•依次连结,便可得到所求作的△A′B′C′. 三、巩固练习 教材 练习. 四、应用拓展

例3.如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1. (1)在图中画出直线A1B1.

(2)求出线段A1B1中点的反比例函数解析式.

y(3)是否存在另一条与直线AB平行的直线y=kx+b(我们

4发现互相平行的两条直线斜率k值相等)它与双曲线只有一个

3交点,若存在,求此直线的函数解析式,若不存在,请说明理

2B由.

A1

-4-3-2-1O1 分析:(1)只需画出A、B两点绕点O顺时针旋转90°得-1到的点A1、B1,连结A1B1. -2-3k (2)先求出A1B1中点的坐标,设反比例函数解析式为y=

x代入求k.

(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A1B1与双曲线是相切的,只要我们通过A1B1的线段作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线. 解:(1)分别作出A、B两点绕点O顺时针旋转90°得到的点A1(1,0),B1(2,0),连结A1B1,那么直线A1B1就是所求的.

1 (2)∵A1B1的中点坐标是(1,)

2k 设所求的反比例函数为y=

x1k1 则=,k=

2121 ∴所求的反比例函数解析式为y=2

x (3)存在.

∵设A1B1:y=k′x+b′过点A1(0,1),B1(2,0)

23x 19

b`11b` ∴ ∴1

k`02kb21 ∴y=-x+1

2 把线段A1B1作出与它关于原点对称的图形就是我们所求的直线. 根据点P(x,y)关于原点的对称点P′(-x,-y)得: A1(0,1),B1(2,0)关于原点的对称点分别为A2(0,-1),B2(-2,0) ∵A2B2:y=kx+b

11bk ∴ ∴2

02k`bb11 ∴A2B2:y=-x-1

211 下面证明y=-x-1与双曲线y=2相切

2x1yx11212x+2=-1  -x-1=12xx2yx2

x+2x+1=0,b2-4ac=4-4×1×1=0

11 ∴直线y=-x-1与y=2相切

2x ∵A1B1与A2B2的斜率k相等 ∴A2B2与A1B1平行

1 ∴A2B2:y=-x-1为所求.

2 五、归纳小结(学生总结,老师点评) 本节课应掌握:

两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),•关于原点的对称点P′(-x,-y),及其利用这些特点解决一些实际问题. 六、布置作业

1.教材 复习巩固3、4.

23.3 课题学习 图案设计

教学内容

课题学习──图案设计 教学目标 利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设

20

计出称心如意的图案.

通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案. 重难点、关键

1.重点:设计图案.

2.难点与关键:如何利用平移、轴对称、•旋转等图形变换中的一种或它们的组合得出图案. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入

B (学生活动)请同学们独立完成下面的各题.

D1.如图,已知线段CD是线段AB平移后的图形,D是B•点的对称点,

•作出线段AB,并回答,AB与CD有什么位置关系.

2.如图,已知线段CD,作出线段CD关于对称轴L的对称线段C′

CD′,•并说明CD与对称线段C′D′之间有什么关系?

3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,•并说明这两条线段之间有什么关系?

DCClD老师点评:

1.AB与CD平行且相等;

2.过D点作DE⊥L,垂足为E并延长,使ED′=ED,同理作出C′点,连结C′D•′,•则CD′就是所求的.CD的延长线与C′D′的延长线相交于一点,这一点在L上并且CD=•C′D′.

3.以D点为旋转中心,旋转后CD⊥C′D′,垂足为D,并且CD=C′D. 二、探索新知

请用以上所讲的平移、轴对称、旋转等图形变换中的一种或组合完成下面的图案设计. 例1.(学生活动)学生亲自动手操作题.

按下面的步骤,请每一位同学完成一个别致的图案. (1)准备一张正三角形纸片(课前准备)(如图a) (2)把纸片任意撕成两部分(如图b,如图c)

(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形.

(4)并将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c)保持不动)

(5)把如图(d)平移到如图(c)的右边,得到如图(e)

(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.

21

老师必要时可以给予一定的指导.

三、巩固练习

教材P78 活动1. 四、应用拓展 例2.(学生活动)请利用线段、三角形、矩形、菱形、圆作为基本图形,•绘制一幅反映你身边面貌的图案,并在班级里交流展示.

老师点评:老师点到为止,让学生自由联想,老师也可在黑板上设计一、二图案.

五、归纳小结 本节课应掌握:

利用平移、轴对称和旋转的图形变换中的一种或组合设计图案. 六、布置作业

1.教材 活动2

22

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务