您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页小学奥数典型问题解析:平均数问题

小学奥数典型问题解析:平均数问题

来源:爱问旅游网
小学奥数典型问题解析:平均数问题

四、 平均数问题

【例1】 暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?

分析:因为平均每天所游的距离提升 498-495=3米,需要多游778-670=108米,所以暑假一共有108÷3=36天,如果平均每天游500米,则要在最后一天游 (500-498)×36+778=850米。

【例2】 某次数学竞赛原定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提升了1分,得一等奖的学生的平均分提升了3分,那么原来一等奖平均分比二等奖平均分多 分。

分析:

解法一:根据题意可知:前六人平均分=前十人平均分+3,这说明在计算前十人平均分时,前六人共多出3×6=18(分),来补充后四人的分数。所以后四人的平均分比前十人平均分少18÷4=4.5分,也就是:后四人平均分=前十人平均分一4.5 。

当后四人调整为二等奖,这样二等奖共有20+4=24(人),平均每人提升了1分,也

就由调整进来的四人来供给,每人平均供给24÷4=6(分),所以,四人平均分=(原来二等奖平均分)+6,与前面 式比较,原来一等奖平均分比原来二等奖平均分多4.5+6=10.5(分)。

解法二:

图上横向的线表示人数,竖向的线表示分数,红线表示原来的的一等奖和二等奖,蓝线表示调整后的一等奖和二等奖,虽然一、二等奖的人数和平均分发生变化,但一、二等奖的总分没有变,也就是说图上红线的两个长方形的面积之和等于蓝线的两个长方形的面积之和,我们观察图能够发现两块黄色小长方形的面积等于蓝色长方形的面积(10-4)×3+20×1=38,蓝色长方形的长是4,宽就是38÷4=9.5,原一等奖比二等奖的平均分高9.5+1=10.5分。

练习四:

1. 甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。

49×7÷(51+49)=3.43分

81+7-3.43=84.57分

2. 某次数学竞赛原定一等奖10人,二等奖20人,现在将二等奖中前4人调整为一等奖,这样得二等奖的学生的平均分下降了1分,得一等奖的学生的平均分下降了2分,

那么原来一等奖平均分比二等奖平均分多 分。

(10×2+20×1)÷4=10分

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务