简 单 数 阵 图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。突破关键:确定中心数,多算的次数,公共的和。先求重叠数。 数总和 + 中心数×重复次数=公共的和×线数
重叠部分 = 线总和 - 数总和 / 线总和 = 公共的和×线数 数 和:指所有要填的数字加起来的和
中 心 数:指中间那数字,即重复计算那数字(重叠数) 重复次数:中心数多算的次数,一般比线数少1 公共的和:指每条直线上几个数的和 线 数:指算公共和的线条数
例1、把1-5 这五个数分别填在左下图中的方例2、把1~5这五个数填入下页左上图中的○里(已格中,使得横行三数与竖列三数之和都等于9。 填入5),使两条直线上的三个数之和相等。 分析与解:中间方格中的数很特殊,横行的三分析与解:与例1不同之处是已知“重叠数”个数有它,竖列的三个数也有它,我们把它叫为5,而不知道两条直线上的三个数之和都等做“重叠数”。也就是说,横行的三个数之和于什么数。所以,必须先求出这个“和”。根加上竖列的三个数之和,只有重叠数被加了两据例1的分析知,两条直线上的三个数相加,次,即重叠了一次,其余各数均被加了一次。只有重叠数被加了两遍,其余各数均被加了一因为横行的三个数之和与竖列的三个数之和遍,所以两条直线上的三个数之和都等于 都等于9,所以: 总和数=(1+2+3+4+5)+重叠数=9+9, 重叠数=(9+9)-(1+2+3+4+5)=3。 [(1+2+3+4+5)+5]÷2=10。 学习必备 精品知识点
例3、把1~5这五个数填入右图中的○里,使例4、将1~7这七个自然数填入左下图的七个○内,每条直线上的三个数之和相等 使得每条边上的三个数之和都等于10。 分析与解:例1是知道每条直线上的三数之和,分析与解:与例1类似,知道每条边上的三数不知道重叠数;例2是知道重叠数,不知道两之和,但不知道重叠数。因为有3条边,所以条直线上的三个数之和;本例是这两样什么都中间的重叠数重叠了两次。于是得到 不知道。但由例1、例2的分析知道, (1+2+…+7)+重叠数×2=10×3。 (1+2+3+4+5)+重叠数=每条直线三数之和×2, 重叠数=[10×3-(1+2+…+7)]÷2=1。 每条直线上三数之和=(15+重叠数)÷2。 剩下的六个数中,两两之和等于9的有2,7;因为每条直线上的三数之和是整数,所以重叠3,6;4,5。可得右上图的填法。 数只可能是1,3或5。 若“重叠数”=1,则两条直线上三数之和为8。 若“重叠数”=3,则两条直线上三数之和为9。 若“重叠数”=5,则两条直线上三数之和为10。 例5、将 10~20填入左下图的○内,其中15总结:辐射型数阵图只有一个重叠数,重叠次已填好,使得每条边上三个数字之和都相等。 数是“直线条数”-1,即m-1。对于辐射型数阵图,有已知各数之和+重叠数×重叠次数 =直线上各数之和×直线条数。 (1)若已知每条直线上各数之和,则重叠数等于(直线上各数之和×直线条数-已知各数之 和)÷重叠次数。(如例1、例4) 分析与解:与例2类似,中间○内的15是重(2)若已知重叠数,则直线上各数之和等于(已叠数,并且重叠了四次,所以每条边上的三个知各数之和+重叠数×重叠次数)÷直线条数。数字之和等于[(10+11+…+20)+15×4]÷5=45。 如例2、例5。 剩下的十个数中,两两之和等于(45-15=)30的(3)若重叠数与每条直线上的各数之和都不知有10,20;11,19;12,18;13,17;14,16。道,则要从重叠数的可能取值分析,如例3。 于是得到右上图的填法。 学习必备 精品知识点
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。 突破关键:确定顶点上的数字,公共的和。 数和+重叠数的和=公共的和×边数 数 和:指所有要填的数字加起来的和 公共的和:指每条直线上几个数的和
重叠数和:指数阵图顶角重复算的数全加起来的和 边 数:指封闭图形的边数
例1、把1~6这六个数分别填在下图中三角形例5、将2~9这八个数分别填入右图的○里,的六个○内,使每条边上三个数的和等于9。 使每条边上的三个数之和都等于18。 分析:线总和:9×3=27 数总和:1+2+3+4+5+6=21 重叠数=线和-数和=28-21=7=1+2+4 分析:线总和:18×4=72 数总和:2+3+4+5+6+7+8+9=44 重叠数=线和-数和=72-44=28=9+8+7+4 例6、将1、2、3、4、5、6这6个数分别填入把3、6、9、12、15五个数填在下面○里,使每条线上三个数的和与正方形四个角上四个下图中,使两个大圆上4个数的和都等于14 数的和相等。 线总和:14×2=28 数总和:1+2+3+4+5+6=21 重叠数=线和-数和:28-21=7 两个数的和是7的有7=1+6=2+5=3+4 数总和:3+6+9+12+15=45 外围正方形的和=45-重叠数 内部辐射图形每条线公共和=(45+重叠数)÷2 按题意:45-重叠数=(45+重叠数)÷2 重叠数=15 学习必备 精品知识点
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务