pi2Qini(ni1)。
1、2、“公平的席位分配”模型中的Q值法计算公式是
c1c2rTC(T)T23、“存贮模型”的平均每天的存贮费用计算公式为
4、LINGO中,表示决策变量x是0-1变量的语句是 @gin(x) 。 5、一阶自治微分方程
,当T2c1c2r时,
C(T)最小。
&xf(x)的平衡点是指满足 f(x)0 的点,若 f'(x)0 成立,则其平衡点是稳定的。
Kf <
6、市场经济中的蛛网模型中,只有当
Kg时,平衡点
P0 才是稳定的。
7、“传染病模型”中SIS模型是指被传染者康复以后,还有可能再次感染该传染病。 8、传送系统的效率模型中,独立地考虑每个钩子被触到的概率为钩子的概率为
kkCnp(1p)nk 。
p,则共有n个钩子的系统中,一周期内被触到k个
rtx(t)xe09、我们所建立的“人口指数增长”模型是根据微分方程 建立的。我们所建立的“人口阻滞增长”模型是
根据微分方程
dxxrx(1)dtxm 建立的。
10、“商人怎样安全过河”模型中,从初始状态到终止状态中的每一步决策都是集合D中的元素 。 11、建立起的“录像机计数器的用途”模型tan2bn中的参数a和b可用 数值积分 方法求得。
12、“双层玻璃的功效”模型中,建筑规范一般要求双层玻璃的间隙约为玻璃厚度的1/2 。“双层玻璃的功效”模型中,按建筑规范实施的双层玻璃可节能 97 % 。
13、“传染病模型”中所未涉及的模型是SIS模型.
14、下列正则链和吸收链的说法中,错误的是 吸收链存在唯一极限状态概率。
15、“人口阻滞增长”模型是在“指数增长模型”的前提下, 假设人口增长率是人口数量的减函数 。 16、“人口阻滞增长”模型中,当人口数
x(t)xm/2时,人口增长率最大;当人口数x(t)xm时,人口增长率为0。
twk2vn217、“录像带计数器的读数”多种方法建立的模型都是器的读数 的增长速度越来越慢 。
2rknv。“录像机计数器的用途”模型中,计数
18、“双层玻璃的功效”模型中,所依据的基本物理公式是
QkTd。
19、“经济增长模型”中,衡量经济增长的指标有 总产值的增长 、 单位劳动力产值的增长 。 “经济增长模型”中,要保持总产值
Q(t)增长,即要求。
dQ0dt
20、“传染病模型”中SIR模型是指被传染者康复以后具有免疫性, 不再感染该传染病。 21. 存贮模型的优化目标是 平均每天费用最小。
22.“经济增长模型”中,要保持平均每个劳动力的产值23.“层次分析模型”中成比对矩阵 二:概念题
z(t)增长,即要求 劳动力的增长率小于初始投资增长率。
aijajkaik式,则称为一致阵。
A(aij)如果满足如下
1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分) 答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分) 答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。 三:问答题
1、请用简练的语言全面的描述数学建模的过程和数学模型的特点。(10’)
答:(1)建模过程:模型准备→模型假设→模型构成→模型求解→模型检验→模型应用。 (2)数学模型的特点:逼真性和可行性;渐进性;强健性;可转移性;
非预制性;条理性;技艺性;局限性;
2、某家具厂生产桌子和椅子两种家具,桌子售价50元/个,椅子销售价格30元/个,生产桌子和椅子要求需要木工和油
漆工两种工种。生产一个桌子需要木工4小时,油漆工2小时。生产一个椅子需要木工3小时,油漆工1小时。该厂每个月可用木工工时为120小时,油漆工工时为50小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型不计算)(10’)
解:(1)确定决策变量:x1=生产桌子的数量
x2=生产椅子的数量
(2)确定目标函数:家具厂的目标是销售收入最大
max z=50x1+30x2
(3)确定约束条件:
4x1+3x2<120(木工工时限制) 2x1+x2>50(油漆工工时限制)
(4)建立的数学模型为:
max S=50x1+30x2 s.t. 4x1+3x2<120 2x1+ x2>50 x1, x2 >0
3、有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,
才能使总的消耗时间为最少?(建立模型不计算)
解:令
0,指派第i人完成第j项工作xij1,不指折派第i项工作目标函数:
minZ15x1118x1221x324x1419x2123x2218x2426x3117x3216x3319x3419x4121x4217x44约束条件:
st..x11x21x31x411x12x22x32x421x13x23x33x431x14x24x34x441
4、结合自身的实际情况,谈谈数学建模的方法和自身能力的培训。(10’) 答:(1)方法:机理分析、测试分析、实例研究 … ; (2)能力:想象力、洞察力 … 。
5、试用简练的语言全面的描述“商人怎样安全过河”该类问题。(10’) 答:求决策
dkD(k1,2,,n)sn1(0,0)。
,使状态
skSkss(1)dk,则初始状态s1(3,3)经k1k按照转移律
有限步n到达状态
6、分别采用三种方法,用一句话和一个公式描述录像带计数器读数与经过的时间之间的关系模型。(10’) 答:(1)当右轮盘转到第i圈时其半径为rwi,周长为
2(rwi),m圈的总长度恰等于录像带转过的长度,
即:
2(rwi)vti1m;
(2)考虑录像带转过的长度与厚度的乘积,等于右轮盘面积的增加,即:
[(rwkn)2r2]wvt;
(3)考虑用微积分的理论,有某小时间段dt内录像带转过的长度为速度v乘以dt,它等于右轮盘绕上的录像带
长度(由于mkn),即:
vdt2(rknw)kdn;
以上三种方法都可得到:
twk2vn22rknv。
7、简述差分方程平衡点的稳定性定义、三阶线性常系数差分方程平稳点稳定性的判别条件和非线性差分方程平稳点的稳定性判别条件。
答:(1)差分方程的平衡点x*若满足:当k(2)若三阶线性常系数差分方程
时,xkx*,则称平衡点x*是稳定的。
xk2a1xk1a2xkb2a1a2b的特征方程
的根
i(i1,2,3)均有
i1,则该差分方程的平衡点x*是稳定的,否则是不稳定的。
的平衡点x*若满足
(3)非线性差分方程
xk1f(xk)f'(x*)1,f'(x*)1,
则平衡点x*是稳定的;否则若
则平衡点x*是不稳定的。
8:某中学有三个年级共1000名学生,一年级有219人,二年级316人,三年级有465人。现要选20名校级优秀学生,请用下列办法分配各年级的优秀学生名额:(1)按比例加惯例的方法;(2)Q 值法。另外如果校级优秀学生名额增加到21个,重新进行分配,并按照席位分配的理想化准则分析分配结果。
219316465204.38206.32209.30100010001000解:20个席位:(1)、,,因此比例加惯例分配结果为5、31622192Q2Q1672377.52 452398.05,6、9个。(2)三方先分得4、6、9个,
4652Q39102402.5,Q3最大,按Q值法分配结果为4、6、10个。
219316465214.599216.636219.76521个席位:(1)1000,1000,1000因此比例加惯例分配结果为4、7、
10个。(2)三方先分得4、6、10个,
4652Q31011195.68,Q1最大,按Q值法分配结果为5、6、10个。
Q值法分配结果恰好也满足准则2,因此Q值法分配结
显然此例中比例加惯例的方法违背了席位分配的理想化准则1,而果是同时符合准则1和准则2.。
9:大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方
351A1/3121/51/21,方案层对面,有三个就业岗位可供选择。层次结构图如图,已知准则层对目标层的成对比较矩阵
374611/41/711B1/313B1/412B1411/223172,1/71/31,1/61/21。 准则层的成对比较矩阵分别为
请根据层次分析方法为小李确定最佳的工作岗位。
解:用“和法”近似计算得:
选择发展就业
收入 发展 声誉
岗位1
T岗位2 岗位3
(0.65,0.23,0.12)矩阵A对应的权向量为:
矩阵
,最大特征根为3.003697,CI,最大特征根为3.001982,CI0.0018,CR0.0031 0.001,CR0.0017
B1对应的权向量为:(0.08,0.32,0.60)T矩阵矩阵
B2对应的权向量为:(0.67,0.24,0.09)T,最大特征根为3.00703,CI0.0035,CR0.006 B3T(0.70,0.19,0.11)对应的权向量为:,最大特征根为3.00922,CI0.0046,CR0.008
T(0.292628,0.283708,0.423664)组合权向量为
因此最佳的岗位为岗位3。
10:某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止(退保)。 保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?
退保 0.03 0.05 0.15 死亡 0.07 健康 0.1 疾病 000101000.150.050.7.010.030.070.60.3,从而知状态“退保”和“死亡”为两个吸收状态,此为吸收解:由题意,转移概率矩阵为0.6
链。
10.30.1M(IQ)10.60.75经过
=
243421T3(5,6)2yMe=3,因此在投保时健康或疾病状态下,平均需要
13或6年投保人就会出现退保或死亡的情况。
0.720.280.660.34,因此在投保时健康状态下,被“退保”和“死亡”吸收的概率分别为0.72和0.28;在投保FMR=时疾病状态下,被“退保”和“死亡”吸收的概率分别为0.66和0.34。
1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下
午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分)
证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F(a)<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成: 记第k次渡河前此岸的商人数为
xk,随从数为
yk,k=1,2,........,
xk,
yk=0,1,2,3。将二维向量
sk=
(S=
xk,
yk)定义为状态。安全渡河条件下的状态集合称为允许状态集合,记做S。
x,y|x0,y0,1,2,3;x3,y0,1,2,3;xy1,2 记第k次渡船上的商人数为uk随从数为vk将二
dk随=(
维向量
ukvk,
)定义为决策。允许决策集合记作D,由小船的容量可知D=
u,v|1uvv,u,v0,1,2
状态
skdk的变化规律是:
sk1=
skk1dk 模型求解 用图解法解这个模型更为方便,如下: +
五:计算题(共5小题,每小题9分,本大题共45分)
131A1141/31/41试用和法求出A的最大特征值,并做一致性检验(n=3时, RI=0.58)1、。
131A1141/31/41
3/74/93/83/74/94/81/71/91/81.2481.3730.569答:中各列归一化 ,各行求和 =
w
而
4.328Aw4.8971.328, 所以最大特征根为
13(Aw)i14.3284.8971.328()3.1233i1wi31.2481.3730.569
3其一致性指标为:CI=
313.1233CI0.0610.0610.1060.12RI0.58,CR=, 所以A不通过一致性检验。
2、 一块土地,若从事农业生产可收100元,若将土地租给某乙用于工业生产,可收200元。若租给某丙开发旅游业可收
300元。当丙请乙参与经营时,收入达400元,为促成最高收入的实现,试用shapley值方法分配各人的所得。(9分) 答:甲、乙、丙所得应为250元,50元,100元(步骤略)
3、产品每天需求量为常数r, 每次生产准备费用为C1,每天每件产品贮存费用为C2, 缺货损失费为C3,试作一合理假设,建立允许缺贷的存贮模型,求生产周期及产量使总费用最小。(9分)
解:模型假设:1.产品每天需求量为常数r 2.每次生产准备费用为c1,每天每件产品贮存费用为c2 3.生产能力无限大 ,缺货损失费为C3 ,当t=T1时产品已用完 4.生产周期为T,产量为Q
C3r(TT1)2C2T1QCC122模型建立:一周期总费用如下:
一周期平均费用为
C1C2Q2C3(rTQ)2f(T,Q)T2rT2rTT模型求解: 用微分法解得周期
2C1(C2C3)rC2C3(1分)产量
Q2rC1C3C2(C2C3)
4、人的状态分为三种:1(健康),2(患病),3(死亡)。
设对特定年龄段的人,今年健康,明年保持健康的概率为0.8,患病的概率为0.18,而今年患病的人明年健康的概率
为0.65,健康的概率为0.25,构造马氏链模型,说明它是吸收链,并求健康,患病出发变成死亡的平均转移次数。
解:状态2分记
i1健康,i2患病,i3死亡, 则
,依歇易得转移概率阵为
0.8P0.6500.18
0.250
0.020.11
na1n,a2(n),a3(n)n1(n)PQPO
(n1,2,)(1分)易是:
i3死亡是吸收状态,马氏链是吸收链。1
RI
0.8Q0.65
0.180.25
0.180.020.210.751RMIQ0.0430.650.1,0.65 0.25930850和4343 。 康、患病出发变成死亡的平均转移次数分别为
x(t)rx(1(5.设渔场鱼量满足下列方程:(9分)(1)讨论鱼场鱼量方程的平衡点稳定状况 (2)如何获得最大持续产量
0.1810.93yMe0.20.0430.85
由健
x2))hN
F(x)rx(1(解:令
x2))hN,
3x2F(x)r(12)Nf(x)rx(1(x2))hN的最大值点为
(N2rN,)33当h2rN/3时,无平衡点当h2rN/3时,有两个平衡点x1(N/3)和x2(N/3),经过判断
x1
不稳定,x2稳定 当h2rN/3时,平衡点x0N/3,由F(x0)0不能判断它稳定性
(2)为了获得最大持续产量,应使xN/3且尽量xN/3接近,但操作困难
1考虑药物在体内的分布与排除之二室模型
即:把整个机体分为中心室与周边室两室,两室之间的血药相互转移,转移速率与该室的血药浓度成正比,且只有中心室与体外有药物交换,药物向体外排除的速率与该室的血药浓度成正比,试建立两室血药浓度与时间的关系。(不必求解) 解:假设
ci(t)xi(t)、
和
Vi分别表示第i室
(i1.2)的血药浓度,药量和容积,k12和k21是两室之间药物转移速率系数,
x1(t)k12x1k13x1k21x2f0(t)(t)k12x1k21x2xk13f(t)是从中心室(第1室)向体外排除的速率系数则2(1)(其中0是给
f0(t)v2c(t)(kk)ckc(3)121312121vv11v1c(t)k12c1k21c22vxi(t)Vici(t)(2)2药速率)及于是:
2、某工厂拟安排生产计划,已知一桶原料可加工10小时后生产A产品2公斤,A产品可获利30元/公斤 ,或加工8小时可生产B产品3公斤,B产品可获利18元/公斤,或加工6小时可生产C产品4公斤,C产品可获利12元/公斤,现每天可供加工的原料为60桶,加工工时至多为460小时,且A产品至多只能生产58公斤。为获取最大利润,问每应如何安排生产计划?请建立相应的线性规划模型
答:设每天安排x1桶原料生产A产品,x2桶原料生产B产品,x3桶原料生产C产品,则有:
maxz60x154x248x32x13x24x36010x8x6x46023s.t.12x158x1,x2,x30
1、在录像机计数器的用途中,仔细推算一下(1)式,写出与(2)式的差别,并解释这个差别;
k22knm(m1)tn(2r)2mr2vtvv21、 答:由(1)得,将mkn代入得,
因为r
2、试说明在不允许缺货的存储模型中为什么没有考虑生产费用,在什么条件下可以不考虑它; 2、答:假设每件产品的生产费用为
所以2r2r,则得(2)。
c3,则平均每天的生产费用为
c3r,每天的平均费用是
C1(T1)
c1c2rT1c3rT122c1dC1(T1)dC(T)T1Tc2rdT1dT,所以 TC(T),下面求1使11最小,发现
1,与
生产费用无关,所以不考虑。
1、对于传染病的SIR模型,叙述当
s0时
i(t)的变化情况并加以证明。
1、答:由(14)
1dii(s1),s0dt若
1,当ss0di0,i(t)dt时,增加;
s当
1di0,i(t)si时,dt达到最大值m;当
1di0,i(t)i0
时,dt减少且由1.知2、在捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度E的减函数,
即
cabE,(a0,b0),请问如何达到最大经济效益?
2、 答:
S(abE)E,则
RTSpEx(abE)E,将
x0N(1E)r代入,得
rapNpN2ER(E)(pNa)E(b)ER2rbpNr,令R0得
1、在 随机存储策略中,请用图解法说明为什么s是方程1、由于方程(4)左边随着S的增加单调递增,因此而由
。
I(x)c0I(S)的最小正根。
J(u)有唯一驻点uSx且为最小值点。从而J(u)是下凸的。
J(u)和I(x)的表达式的相似性知I(x)也是下凸的,而且在xS处达最小值 I(S)。
,
记
A{xI(x)c0I(S)}B{xI(x)c0I(S)}则集合
A与B的分界点即为订货点s,此即方程
I(x)c0I(S)的最小正根
2、请结合自身特点谈一下如何培养数学建模的能力? 2、答:(回答要点)培养想象力和洞察力。
1、“商人怎样安全过河”模型中,从初始状态到终止状态中的每一步决策( d)。 A.称之为状态
B.记为sk=(xk, yk)
C.是集合S中的元素 D.都是集合D中的元素
2、我们所建立的“人口指数增长”模型是根据微分方程( c )建立的。
A.
xkx0(1r)k
dxrxdtB.
rtx(t)xe0C.
D.
x(t)x0ert
3、“人口阻滞增长”模型的计算结果表明了( d )。
A.人口增长率为常数 B.人口增长率逐步变大 C.人口将按指数规律无限增长 D.人口将达到最大容量
4、“人口阻滞增长”模型表明人口增长率的规律是( b )。
A.人口增长率逐步变大 C.人口增长率先变小后变大
B.人口增长率先变大后变小 D.人口增长率逐步变小
5、建立起的“录像机计数器的用途”模型t
A.最小二乘估计
B.插值
an2bn中的参数a和b可用(c )方法求得。
C.数值积分
D.统计推断
6、“双层玻璃的功效”模型中,建筑规范一般要求双层玻璃的间隙约为玻璃厚度的( b )。
A. 2倍
B. 1/2
C. 3倍
D. 4倍
7、“奶制品的生产与销售”模型中,以下说话错误的是( b)。
A、资源剩余为零的约束为紧约束
B、资源的单位增量引起的效益增量称为“影子价格”
C、影子价格大于零的资源一定是紧约束 D、影子价格小于零的资源一定是松约束 8、“传染病模型”中所未涉及的模型是( b )。
A、SI模型
B、SIS模型
C、SID模型
D、SIR模型
9、“经济增长模型”中以下说法正确的是( c )。
A、
K(t)表示劳动力;
B、
表示劳动力在产值中所占的份额;
C、
QL表示资金创造的产值;
D、表示资金创造的产值;
10、下列正则链和吸收链的说法中,错误的是( d )
A、正则链有任意状态都能达到; C、正则链存在唯一的极限状态概率;
B、吸收链可以包含多个吸收状态; D、吸收链的存在唯一极限状态概率。
2、“人口阻滞增长”模型是在“指数增长模型”的前提下, 假设人口增长率是人口数量的减函数 。 3、“人口阻滞增长”模型中,当人口数
x(t)xm/2时,人口增长率最大;当人口数x(t)xm时,人口增长率为0。
twk2vQn25、“录像带计数器的读数”多种方法建立的模型都是
2rknv。
kTd。
6、“双层玻璃的功效”模型中,所依据的基本物理公式是
7、“传染病模型”中SIR模型是指被传染者康复以后具有免疫性, 不再感染该传染病。 8、“经济增长模型”中,衡量经济增长的指标有 总产值的增长 、 单位劳动力产值的增长 。
1、试用简练的语言全面的描述“商人怎样安全过河”该类问题。(10’)
答:求决策
dkD(k1,2,,n)sn1(0,0)。
,使状态
skSkss(1)dk,则初始状态s1(3,3)经有k按照转移律k1限步n到达状态
3、分别采用三种方法,用一句话和一个公式描述录像带计数器读数与经过的时间之间的关系模型。(10’) 答:(1)当右轮盘转到第i圈时其半径为rwi,周长为
2(rwi),m圈的总长度恰等于录像带转过的长度,
2(rwi)vt即:
i1m;
22[(rwkn)r]wvt;
(2)考虑录像带转过的长度与厚度的乘积,等于右轮盘面积的增加,即:
(3)考虑用微积分的理论,有某小时间段dt内录像带转过的长度为速度v乘以dt,它等于右轮盘绕上的录像带
长度(由于mvdt2(rknw)kdn; kn),即:
twk2vn2以上三种方法都可得到:
2rknv。
4、简述差分方程平衡点的稳定性定义、三阶线性常系数差分方程平稳点稳定性的判别条件和非线性差分方程平稳点的稳定性判别条件。(10’)
答:(1)差分方程的平衡点x*若满足:当k(2)若三阶线性常系数差分方程
时,xkx*,则称平衡点x*是稳定的。
xk2a1xk1a2xkb2a1a2b的特征方程
的根
i(i1,2,3)均有
i1,则该差分方程的平衡点x*是稳定的,否则是不稳定的。
(3)非线性差分方程
xk1f(xk)的平衡点x*若满足
f'(x*)1,则平衡点x*是稳定的;否则若f'(x*)1,
则平衡点x*是不稳定的
1、我们建立的“商人怎样安全过河”模型是(a )。
A.允许决策模型
B.状态转移模型
C.马氏链模型
D.多步决策模型
2、“人口指数增长”模型的计算结果表明了( c )。
A.人口增长率为常数 B.人口增长率逐步变大 C.人口将按指数规律无限增长 D.人口将达到最大容量
3、我们所建立的“人口阻滞增长”模型是根据微分方程(d )建立的。
rtx(t)xe0 A.
dxrxB.dt
r(x)r(1
C.
x)xm D.
dxxrx(1)dtxm
4、“公平合理的席位分配”模型中,以下说法错误的( d)。
A.参照惯例的席位分配结果是较合理的 C. 席位分配一类问题的Q值法是较公平的
B.提出的相对不公平程度对席位分配有改进效果 D.存在满足四个公平分配公理的分配方法
5、“录像机计数器的用途”模型中,计数器的读数(c )。
A.是均匀增长的
B.与录像带的线速度v成正比 C.的增长速度越来越慢 D.与经过的时间成正比
6、“双层玻璃的功效”模型中,按建筑规范实施的双层玻璃可节能( b )。
A. 3 %
B. 97 %
C. 93 %
D. 7 %
7、存贮模型的优化目标是(d )。
A、库存量最小
B、库存量最大
C、一周期的费用最小
D、平均每天费用最小
8、“经济增长模型”中,要保持总产值
Q(t)增长,即要求( c )
。
dQ0 A、dt
dQ0B、dt
dQ0C、dt
Q0D、L
9、“经济增长模型”中,要保持平均每个劳动力的产值
z(t)增长,即要求(a )
。
A、劳动力的增长率小于初始投资增长率 B、劳动力的增长率等于初始投资增长率 C、劳动力的增长率大于初始投资增长率 D、劳动力的增长率不等于初始投资增长率
10、“层次分析模型”中成比对矩阵
A(aij)如果满足如下( d )式,则称为一致阵。
A、
aij0 B、
1aijaji C、
ai1nij1
D、
aijajkaik
kss(1)dk。 k1k1、“商人怎样安全过河”模型中状态随决策变化的规律是
pi2Qini(ni1)。
2、“公平的席位分配”模型中的Q值法计算公式是
c1c2rTC(T)T23、“存贮模型”的平均每天的存贮费用计算公式为
4、LINGO中,表示决策变量x是0-1变量的语句是 @gin(x) 。 5、一阶自治微分方程
,当T2c1c2r时,
C(T)最小。
&xf(x)的平衡点是指满足 f(x)0 的点,若 f'(x)0 成立,则其平衡点是稳定的。
Kf <
6、市场经济中的蛛网模型中,只有当
Kg时,平衡点
P0 才是稳定的。
7、“传染病模型”中SIS模型是指被传染者康复以后,还有可能再次感染该传染病。 8、传送系统的效率模型中,独立地考虑每个钩子被触到的概率为钩子的概率为
kkCnp(1p)nk 。
p,则共有n个钩子的系统中,一周期内被触到k个
1、请用简练的语言全面的描述数学建模的过程和数学模型的特点。(10’)
答:(1)建模过程:模型准备→模型假设→模型构成→模型求解→模型检验→模型应用。
(2)数学模型的特点:逼真性和可行性;渐进性;强健性;可转移性;非预制性;条理性;技艺性;局限性; 2、某家具厂生产桌子和椅子两种家具,桌子售价50元/个,椅子销售价格30元/个,生产桌子和椅子要求需要木工和油
漆工两种工种。生产一个桌子需要木工4小时,油漆工2小时。生产一个椅子需要木工3小时,油漆工1小时。该厂每个月可用木工工时为120小时,油漆工工时为50小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型不计算)
解:(1)确定决策变量:x1=生产桌子的数量 x2=生产椅子的数量 (2)确定目标函数:家具厂的目标是销售收入最大 max z=50x1+30x2
(3)确定约束条件: 4x1+3x2<120(木工工时限制) 2x1+x2>50(油漆工工时限制) (4)建立的数学模型为: max S=50x1+30x2 s.t. 4x1+3x2<120 2x1+ x2>50 x1, x2 >0
3、有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,
才能使总的消耗时间为最少?(建立模型不计算)(10’)
0,指派第i人完成第j项工作xij1,不指折派第i项工作解:令
minZ15x1118x1221x324x1419x2123x2218x24目标函数:
26x3117x3216x3319x3419x4121x4217x44
约束条件:
st..x11x21x31x411x12x22x32x421x13x23x33x431x14x24x34x441
4、结合自身的实际情况,谈谈数学建模的方法和自身能力的培训。(10’) 答:(1)方法:机理分析、测试分析、实例研究 … ; (2)能力:想象力、洞察力 … 。
因篇幅问题不能全部显示,请点此查看更多更全内容