一、学习目标:
1·使学生会用完全平方公式分解因式·
2·使学生学习多步骤,多方法的分解因式
二、重点难点:
重点:让学生掌握多步骤、多方法分解因式方法
难点:让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1·推导用完全平方公式分解因式的公式以及公式的特点·
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2—2ab+b2=(a—b)2·
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2—2ab+b2的式子称为完全平方式·
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法·
练一练·下列各式是不是完全平方式?
(1)a2—4a+4;(2)x2+4x+4y2;
(3)4a2+2ab+ b2;(4)a2—ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49;(2)(m+n)2—6(m +n)+9·
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2;(2)—x2—4y2+4xy·
课堂练习:教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9;(2)4(2a+b)2—12(2a+b)+9;
五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2—2ab+b2的式子称为完全平方式·
六、作业:1、
2、分解因式:
X2—4x+4 2x2—4x+2(x2+y2)2—8(x2+y2)+16(x2+y2)2—4x2y2
45ab2—20a —a+a3 a—ab2 a4—1(a2+1)2—4(a2+1)+4
因篇幅问题不能全部显示,请点此查看更多更全内容