您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页受体

受体

来源:爱问旅游网
乙酰胆碱受体储存库:

1937年,正当梭尔邦(Sorbonne)大学的神经生理学家David Nachmansohn参观巴黎世界博览会时,他注意到有几只具发电器官(electric organ, EO)的鳐正在表演节目。这些鳐的EO能够发出40~60V的电压,杀死水中的潜在食物。

当时Nachmansohn正在研究乙酰胆碱酯酶(AChase),AChase可酶解从运动神经末稍释放的ACh。Nachmansohn知道这类鱼的EO与骨骼肌是同源的,于是在博览会结束后,开始对EO进行研究。对EO的第一次实验结果表明它是AChase的超级储存库。此器官也是nAChR十分丰富的储存库,nAChR存在于骨骼肌细胞的突触后膜上,它会与由运动神经末稍释放的ACh分子结合。

如果能发现一个理想的系统模型,对于细胞结构和功能的特殊领域的研究,可以说是无价的。这将在后面的讨论中得以证实,鱼的发电器官事实上是nAChR研究中的唯一物质来源。

脱敏

脱敏是指在使用一种激动剂期间或之后,组织或细胞所产生的对激动剂敏感性和反应性下降的现象。有时,脱敏仅局限于激动剂本身,而组织对其它激素的反应性不受影响,这种现象称之为同种脱敏。反之,若组织对其它激素的刺激也变得不敏感,则称之为异种脱敏。前者可能是因受体自身的变化,如磷酸化、内移等引起;而后者则可能是由于所有受影响的受体拥有一个共同的反馈调节机制,或者受到调节的是它们信息传递通路上的某个共同环节。

受体脱敏机制

受体的磷酸化:G蛋白偶联受体是一个很大的受体家族,它们可能均有7次跨膜的拓朴结构。它们所引起的生理功能包括激素作用、神经传递、趋化性、视觉、嗅觉及味觉等。其中许多受体都受到受体激酶的调节。它们的快速脱敏主要是由于受体的磷酸化,至少有两类不同的丝/苏氨酸蛋白激酶与此有关:(1)第二信使激活的激酶PKA、PKC;(2)不依赖第二信使的G蛋白偶联受体激酶(GRKs)。GRKs特异作用于被激动剂占领或激活的受体,它引起的脱敏包括两个步骤:首先,GRK识别激活状态的受体,并使之磷酸化;接着,“arrestin样”抑制蛋白结合到磷酸化了的受体上。这最早在“光受体”视紫红质与视紫红质激酶间及β2肾上腺素受体与βARK1间的体外实验中获得证实。发现通过这两个步骤之后,视紫红质的磷酸二酯酶激活能力及β2肾上腺素受体的GsGTPase激活能力均被抑制。但在不同的系统中,受体磷酸化和“arrestin样”蛋白结合对脱敏机制的贡献可能不一样[4]。

受体的内移:受体内移是受体数目减少的一个重要原因。一般认为这是一种特殊的胞吞作用。其过程大致是:受体与相应的配体结合后,先丛集于被膜小凹处,继而内陷成囊状结构,并与溶酶体融合,其中的受体有的可被释放并重新参入膜中,其余的则被溶酶体酶降解成多肽。

激动剂促发的受体磷酸化在许多G蛋白偶联受体的内移过程中起着重要的作用,而且GRKs和ar-restins在其中扮演着重要的角色。研究发现,某些受体的内移与受体脱敏有关。M3型胆碱受体的羧基端苏氨酸残基的突变,可以很明显地减少受体内移,同时也明显削弱受体脱敏的能力。此外,膜受体浓度的变化也在激动剂引起的μ型阿片受体的脱敏中起着重要的作用。不过更多的研究则显示,对于许多受体,如H2型组胺受体、D1型多巴胺受体及M2型胆碱受体等来说,受体内移和受体脱敏这两个过程是相互的。

增敏

增敏是与脱敏作用相反的一种现象,它可因受体激动剂的水平降低或应用拮抗剂而引起,亦可因其它原因而出现。在长时间使用普萘洛尔的情况下,突然停药可出现“反跳”现象,此时受体的敏感性比正常增高了。用手术切断神经或用药物破坏神经原之后,可出现“去神经增敏”现象。例如,切断运动神经不仅使终板部位对乙酰胆碱的敏感性增加,而且肌肉上原来对乙酰胆碱不敏感的部位也产生了反应,并已证明N胆碱受体数目增加。另外,某些激素还可诱发其它激素的增敏反应。例如,甲状腺激素可以增加大鼠脂肪细胞对儿茶酚胺、胰高血糖素及TSH等激素的反应;饲大鼠以甲状腺激素,可促使其心肌中B受体结合部位增加。关于增敏的机制则尚缺乏深入的研究。

离子通道型受体

nAchR是由由5个同源性很高的亚基构组成的5聚体蛋白质,包括2个α亚基,1个β亚基,1个γ亚基的和1个δ亚基,中间位离子通道。每一个亚基都是一个四次跨膜蛋白,约由500个氨基酸残基构成。推测跨膜部分为四条α螺旋结构,其中一条α螺旋含较多的极性氨基酸,就是由于这个亲水区的存在,使五个亚基共同在膜中形成一个亲水性的通道。乙酰胆碱的结合部位是在两个α亚基上,此亚基位于膜外侧且具有糖基化部位。

乙酰胆碱受体可以以三种构象存在。两分子乙酰胆碱的结合可以使之处于通道开放构象,但即使有乙酰胆碱的结合,该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。

乙酰胆碱受体包括两种:毒蕈碱型受体(M受体---G蛋白偶联型受体),产生副交感

神经兴奋效应,即心脏活动抑制,支气管胃肠平滑肌和膀胱逼尿肌收缩,消化腺分泌增加,瞳孔缩小等。阿托品为毒蕈碱受体阻断剂。

烟碱型受体(N受体---离子通道型受体),N1位于神经节突触后膜,可引起自主神经节的节后神经元兴奋,N2受体位于骨骼肌终板膜,可引起运动终板电位,导致骨骼肌兴奋。六烃季胺主要阻断N1受体功能,筒箭毒碱阻断N2受体功能。

精细结构测定:

nAChR更精确的模型已经被英格兰医学研究所的Nigel Unwin和他的同事们所描绘。经过对EO冷冻膜电镜照片的数学分析,Unwin将nAChR的组成描述为5个亚基围绕着一个通道。

为了研究通道开放过程中nAChR的变化,

将准备好的富含nAChR的细胞膜涂抹在一个支持网络上,并使它能够流到装有能使细胞膜冻结的液氮乙烷的容器中。在nAChR溶液到达冷冻池前约5毫秒(msec)时,向网格喷射ACh溶液,ACh就与受体结合并导致其构象变化而打开通道。

通过比较nAChR通道开放与关闭的电镜照片,Unwin发现ACh的结合触发了受体亚基细胞膜外结构域的构象发生了改变,并且传播到整个受体蛋白,导致围绕在孔道周围的α-helix构象改变。

cAMP信号途径:又称PKA系统(protein kinase A system,PKA),是环核苷酸系统的一种。在这个系统中,细胞外信号与相应受体结合,通过调节细胞内第二信使cAMP的水平

而引起反应的信号通路。信号分子通常是激素,对cAMP水平的调节,是靠腺苷酸环化酶进行的。该通路是由质膜上的五种成分组成:激活型受体(RS),抑制型受体(Ri),激活型和抑制型调节G蛋白(Gs和Gi)和腺苷酸环化酶(AC)。

多细胞动物各种以cAMP为第二信使的信号通路,主要是通过cAMP激活的蛋白激酶A(PKA)所介导的。无活性的PKA是由2个调节亚基(R)和2个催化亚基(C)组成的四聚体,在每个R亚基上有2个cAMP的结合位点,cAMP与R亚基结合是以协同方式发生的,即第一个cAMP的结合会降低第二个cAMP结合的解离常数,因此细胞内cAMP水平的很小的变化就能导致PKA释放C亚基并快速使激酶活化,进而使下游靶蛋白磷酸化,从而影响细胞代谢和细胞行为,这是细胞快速应答胞外信号的过程。此外,还有一类细胞缓慢应答胞外信号的过程,就是cAMP信号通路对细胞基因表达的影响

磷脂酰肌醇途径

在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为“双信使系统”。IP3与内质网上的IP3配体门钙通道结合,开启钙通道,使胞内Ca离子浓度升高,激活各类依赖钙离子的蛋白。DG结合于质膜上,可活化与质膜结合的蛋白激酶C(PKC)。PKC以非活性形式分布于细胞溶质中,当细胞接受刺激,产生IP3,使Ca离子浓度升高,PKC便转位到质膜内表面,被DG活化,PKC可以使蛋白质的丝氨酸/苏氨酸残基磷酸化使不同的细胞产生不同的反应,如细胞分泌、肌肉收缩、细胞增殖和分化等。 钙离子活化各种钙离子结合蛋白引起细胞反应,钙调素(钙M)由单一肽链构成,具有四个钙离子结合部位。结合钙离子发生构象改变,可激活钙调素依赖性激酶(CaM-Kinase)。细胞对钙离子的反应取决于细胞内钙结合蛋白和钙调素依赖性激酶的种

类。如:在哺乳类脑神经元突触处钙调素依赖性激酶Ⅱ十分丰富,与记忆形成有关。该蛋白发生点突变的小鼠表现出明显的记忆。IP3信号的终止是通过去磷酸化形成IP2,或被磷酸化形成IP4。钙离子由质膜上的钙离子泵和Na+-Ca2+离子交换器将抽出细胞,或由内质网膜上的钙泵抽进内质网。DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,用来维持PKC的长期效应。

GABAB受体主要通过偶联的Gi/o蛋白,以及Gi/o蛋白异源二聚体激活解离下的Gа亚基和Gβγ亚基而下游信号通路。

GABAB受体偶联钙离子通道:解离下的Gβγ亚基抑制N型钙离子通道而减少钙离子从胞外流向胞内,从而抑制神经递质释放。

GABAB受体偶联钾离子通道:解离下的Gβγ亚基激活Kir3型的钾离子通道从而促进钾离子从胞外流向胞内,增加神经元胞内钾离子浓度,导致神经元的超极化,从而产生缓慢的突触后端抑制性的神经电位。

GABAB受体偶联腺苷酸环化酶:GABAB受体激活后,抑制腺苷酸环化酶活性,降低第二信使环腺苷酸(cAMP)的产生,从而cAMP介导的信号通路。

受体酪氨酸激酶(RTKs)

RTKs是最大的一类酶联受体,它既是受体,又是酶,能够同配体结合,并将靶蛋白的

酪氨酸残基磷酸化。所有的RTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域。

受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物。刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白的结合位点,可能有10~20种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖)

受体丝氨酸/苏氨酸激酶是单次跨膜蛋白受体,在胞内区具有丝氨酸/苏氨酸蛋白激酶活性,该受体以异二聚体行使功能。主要使下游信号蛋白中的丝氨酸或苏氨酸磷酸化,把细胞外的信号传入细胞内,再通过影响基因转录来达到多种生物学功能。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务