您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页北师大版七年级数学下册全部知识点归纳(新)

北师大版七年级数学下册全部知识点归纳(新)

来源:爱问旅游网


)

第一章:整式的运算

整;

整 式 幂运算

单项式 多项式

同底数幂的乘法 幂的乘方

积的乘方

同底数幂的除法 零指数幂 负指数幂 整式的加减

单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘

式 的 运 算 ? 整式运算 平方差公式

完全平方公式 单项式除以单项式 整式的除法

多项式除以单项式 一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。 《

3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。 &

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。 二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。 【

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。 三、整式

1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 >

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: —

(1)代数式化简。 (2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法

nn

1、n个相同因式(或因数)a相乘,记作a,读作a的n次方(幂),其中a为底数,n为指数,a的结果叫做幂。

2、底数相同的幂叫做同底数幂。

mnm+n

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:a﹒a=a。

m+nmn

4、此法则也可以逆用,即:a = a﹒a。 、

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方

mnm

1、幂的乘方是指几个相同的幂相乘。(a)表示n个a相乘。

mnmn

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(a) =a。

mnmnnm

3、此法则也可以逆用,即:a =(a)=(a)。 七、积的乘方

1、积的乘方是指底数是乘积形式的乘方。

nnn

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)=ab。 ~

3、此法则也可以逆用,即:ab =(ab)。 八、三种“幂的运算法则”异同点 1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有3个或3个以上的运算,法则仍然成立。 2、不同点:

(1)同底数幂相乘是指数相加。 ¥

nn

n

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法

mnm-n

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a÷a=a(a≠0)。

m-nmn

2、此法则也可以逆用,即:a = a÷a(a≠0)。 十、零指数幂

0

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a=1(a≠0)。 十一、负指数幂 《

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

apa1p(a0)

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。 十二、整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。 ,

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。 (二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘 。

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。 4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:

2

(x+a)(x+b)=x+(a+b)x+ab。 十三、平方差公式

22

1、(a+b)(a-b)=a-b,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。 ~

3、平方差公式可以逆用,即:a-b=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

22

(a+b)•(a-b)的形式,然后看a与b是否容易计算。 十四、完全平方公式

2

2

1、(ab)a2abb,(ab)a2abb,即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

2、公式中的a,b可以是单项式,也可以是多项式。 3、掌握理解完全平方公式的变形公式:

222222(1)ab(ab)2ab(ab)2ab12[(ab)(ab)]

:

222222

22(2)(ab)(ab)4ab

22[(ab)(ab)] (3)ab144、完全平方式:我们把形如:a2abb,a2abb,的二次三项式称作完全平方式。 5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。

6、完全平方公式可以逆用,即:a2abb(ab),a2abb(ab).

十五、整式的除法

(一)单项式除以单项式的法则

1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。 ~

2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。

(二)多项式除以单项式的法则

1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:(abc)mambmcm. 2、多项式除以单项式,注意多项式各项都包括前面的符号。

]

2222222222

'

!

第二章 平行线与相交线

~ }

余角补角 两线相交

余角 补角 对顶角 同位角 内错角

同旁内角

平行 线与 相交线

三线八角

平行线 尺规作图

平行线的判定 平行线的性质

一、平行线与相交线

平行线:在同一平面内,不相交的两条直线叫做平行线。 若两条直线只有一个公共点,我们称这两条直线为相交线。

二、余角与补角

1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 ?

2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。 4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 5、余角和补角的性质用数学语言可表示为:

(1)1290(180),1390(180),则23(同角的余角(或补角)相等)。 (2)1290(180),3490(180),且14,则23(等角的余角(或补角)相等)。 6、余角和补角的性质是证明两角相等的一个重要方法。 #

三、对顶角

1、两条直线相交成四个角,其中不相邻的两个角是对顶角。

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。

4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。 5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

四、垂线及其性质 \"

1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 2、垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

五、同位角、内错角、同旁内角

1、两条直线被第三条直线所截,形成了8个角。

2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。 '

3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。 4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。 5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。

六、六类角

1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。 2、余角、补角只有数量上的关系,与其位置无关。

3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。 —

4、对顶角既有数量关系,又有位置关系。

七、平行线的判定方法

1、同位角相等,两直线平行。

00000000

2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。

4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。 5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。

<

八、平行线的性质

1、两直线平行,同位角相等。 2、两直线平行,内错角相等。 3、两直线平行,同旁内角互补。

4、平行线的判定与性质具备互逆的特征,其关系如下:

在应用时要正确区分积极向上的题设和结论。

九、尺规作线段和角

1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。 2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。 3、尺规作图中直尺的功能是: (1)在两点间连接一条线段; (2)将线段向两方延长。 4、尺规作图中圆规的功能是: !

(1)以任意一点为圆心,任意长为半径作一个圆; (2)以任意一点为圆心,任意长为半径画一段弧; 5、熟练掌握以下作图语言: (1)作射线××;

(2)在射线上截取××=××;

(3)在射线××上依次截取××=××=××;

(4)以点×为圆心,××为半径画弧,交××于点×;

(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×; ;

(6)过点×和点×画直线××(或画射线××);

(7)在∠×××的外部(或内部)画∠×××=∠×××;

6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)画线段××=××; (2)画∠×××=∠×××;

`

;

;

)

第三章 变量之间的关系

自变量 变量的概念

因变量

!

变量之间的关系 变量的表达方法 表格法 关系式法

速度时间图象 图象法

路程时间图象

一、变量、自变量、因变量

1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。 3、自变量与因变量的确定:

(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。 :

(3)利用具体情境来体会两者的依存关系。 二、表格

1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。 (1)首先要明确表格中所列的是哪两个量;

(2)分清哪一个量为自变量,哪一个量为因变量; (3)结合实际情境理解它们之间的关系。 2、绘制表格表示两个变量之间关系

(1)列表时首先要确定各行、各列的栏目; ?

(2)一般有两行,第一行表示自变量,第二行表示因变量; (3)写出栏目名称,有时还根据问题内容写上单位;

(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。 三、关系式

1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。 3、求两个变量之间关系式的途径: 、

(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。 (2)根据表格中所列的数据写出变量之间的关系式;

(3)根据实际问题中的基本数量关系写出变量之间的关系式; (4)根据图象写出与之对应的变量之间的关系式。 4、关系式的应用:

(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值; (2)同样也可以根据任何一个因变量的值求出相应的自变量的值;

(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。 )

四、图象

1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。

2、图象能清楚地反映出因变量随自变量变化而变化的情况。

3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量。 4、图象上的点:

(1)对于某个具体图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值; (2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值。

(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值。 ;

(4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值。 5、图象理解

(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量; (2)看该点所对应的横轴、纵轴的位置(数据);

(3)从图象上还可以得到随着自变量的变化,因变量的变化趋势。 五、速度图象

1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间; 2、准确读懂不同走向的线所表示的意义: $

(1)上升的线:从左向右呈上升状的线,其代表速度增加;

(2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止; (3)下降的线:从左向右呈下降状的线,其代表速度减小。 六、路程图象

1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间; 2、准确读懂不同走向的线所表示的意义:

(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点); (2)水平的线:与水平轴(横轴)平行的线,其代表静止; 、

(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。 七、三种变量之间关系的表达方法与特点:

表达方法 表格法 关系式法 { 图象法

特 点 多个变量可以同时出现在同一张表格中 准确地反映了因变量与自变量的数值关系 直观、形象地给出了因变量随自变量的变化趋势

第四章 三角形

三角形 全等三角形

三角形三边关系 三角形内角和定理

角平分线 三条重要线段 中线 高线 全等图形的概念 全等三角形的性质 全等三角形的判定 全等三角形的应用

.

三角形

SSS SAS ASA AAS

HL(适用于RtΔ) 利用全等三角形测距离

作三角形

一、三角形概念

1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。 2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。

3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示; /

4、∠A、∠B、∠C为ΔABC的三个内角。 二、三角形中三边的关系

1、三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边。 用字母可表示为a+b>c,a+c>b,b+c>a;a-b(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;

(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即

abcab.

^

三、三角形中三角的关系

0

1、三角形内角和定理:三角形的三个内角的和等于180。 2、三角形按内角的大小可分为三类:

(1)锐角三角形,即三角形的三个内角都是锐角的三角形;

(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。 注:直角三角形的性质:直角三角形的两个锐角互余。 (3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数。 【

4、直角三角形的面积等于两直角边乘积的一半。

0

5、任意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之和为180的性质。 6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。 四、三角形的三条重要线段

1、三角形的三条重要线段是指三角形的角平分线、中线和高线。 2、三角形的角平分线:

(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。 ~

3、三角形的中线:

(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。 (2)三角形有三条中线,它们相交于三角形内一点。 4、三角形的高线:

(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

(2)任意三角形都有三条高线,它们所在的直线相交于一点。

\" 区 别 相 同 中 线 角平分线 平分对边 ~ 平分内角 垂直于对边(或其延长线) 三条中线交于三角形内部 三条角平分线交于三角表内部 锐角三角形:三条高线都在三角形内部 直角三角形:其中两条恰好是直角边 钝角三角形:其中两条在三角表外部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 高 线 五、全等图形 !

1、两个能够重合的图形称为全等图形。

2、全等图形的性质:全等图形的形状和大小都相同。 3、全等图形的面积或周长均相等。

4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。 5、全等图形在平移、旋转、折叠过程中仍然全等。 6、全等图形中的对应角和对应线段都分别相等。 六、全等分割

1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。 &

2、对一个图形全等分割:

(1)首先要观察分析该图形,发现图形的构成特点;

(2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。

七、全等三角形

1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。 2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:全等三角形的对应边、对应角相等。这是今后证明边、角相等的重要依据。 4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点是关键。 。

八、全等三角形的判定

1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。 3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。 4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。 5、注意以下内容

(1)三角形全等的判定条件中必须是三个元素,并且一定有一组边对应相等。

(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等。 》

(3)两边及其中一边的对角对应相等不能判定两三角形全等。 6、熟练运用以下内容

(1)熟练运用三角形判定条件,是解决此类题的关键。 (2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”。 (3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”。 (4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”。

7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形的稳定性。 九、作三角形 ~

1、作图题的一般步骤:

(1)已知,即将条件具体化;

(2)求作,即具体叙述所作图形应满足的条件;

(3)分析,即寻找作图方法的途径(通常是画出草图);

(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程; (5)证明,即验证所作图形的正确性(通常省略不写)。 2、熟练以下三种三角形的作法及依据。

(1)已知三角形的两边及其夹角,作三角形。 -

(2)已知三角形的两角及其夹边,作三角形。 (3)已知三角形的三边,作三角形。 十、利用三角形全等测距离

1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难测量或无法测量的距离转化成已知线段或较容易测量的线段的长度,从而得到被测距离。

2、运用全等三角形解决实际问题的步骤:

(1)先明确实际问题应该用哪些几何知道解决; (2)根据实际问题抽象出几何图形; (3)结合图形和题意分析已知条件; [

(4)找到解决问题的途径。

十一、直角三角形全等的条件 1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 2、“HL”是直角三角形特有的判定条件,对非直角三角形是不成立的; 3、书写时要规范,即在三角形前面必须加上“Rt”字样。 十二、分析-综合法

1、我们在平时解几何题时,采用的解题方法通常有两种,综合法与分析法。

2、综合法:从问题的条件出发,通过分析条件,依据所学知识,逐步探索,直到得出问题的结论。 、

3、分析法:从问题的结论出发,不断寻找使结论成立的条件,直至已知条件。

4、在具体解题中,通常是两种方法结合起来使用,既运用综合法,又运用分析法。

}

第五章 生活中的轴对称

轴对称分类

轴对称图形

生活中的轴对称 》 >

轴对称

角平分线

线段的垂直平分线 等腰三角形 等边三角形 轴对称的性质

轴对称实例

轴对称的性质 轴对称的应用

镜面对称的性质 图案设计 镶边与剪纸

一、轴对称图形

1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这

条直线叫做对称轴。

2、理解轴对称图形要抓住以下几点: (1)指一个图形;

(2)存在一条直线(对称轴);

(3)图形被直线分成的两部分互相重合;

(4)轴对称图形的对称轴有的只有一条,有的则存在多条;

(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形; %

二、轴对称

1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 2、理解轴对称应注意: (1)有两个图形;

(2)沿某一条直线对折后能够完全重合;

(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形; (4)对称轴是直线而不是线段;

… 轴对称 轴对称图形 区别 ^是一个图形自身的对称特性 对称轴可能不止一条 沿某条直线对折后都能够互相重合 是两个图形之间的对称关系 对称轴只有一条 共同点 如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形; 如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。 三、角平分线的性质 1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。 {

四、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 五、等腰三角形

1、有两条边相等的三角形叫做等腰三角形; 2、相等的两条边叫做腰;另一边叫做底边;

3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角; 4、三条边都相等的三角形也是等腰三角形。 `

5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。

6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。 7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。 8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。 9、“三线合一”是等腰三角形特有的性质,是指其顶角平分线,底边上的高和中线,这三线,并非其他。 10、等腰三角形的两个底角相等,简写成“等边对等角”。 11、判定一个三角形是等腰三角形常用的两种方法: (1)两条边相等的三角形是等腰三角形; (

(2)如果一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边”。 六、等边三角形

1、等边三角形是指三边都相等的三角形,又称正三角形,是最特殊的三角形。

2、等边三角形是底与腰相等的等腰三角形,所以等边三角形具备等腰三角形的所有性质。 3、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。

0

4、等边三角形的三边都相等,三个内角都是60。

& 图形 性质 定义 1、两腰相等,两底角相等。 002、顶角=180-2×底角。底角=(180-顶角)/2。 3、顶角的平分线、底边上的中线和高“三线合一”。 ? 4、轴对称图形,有一条对称轴。 等腰三角形 有两边相等的三角形 等边三角形(又叫正三角形)

三边都相等的三角形 1、三边都相等,三内角相等,且每个内角都等于60。 2、具有等腰三角形的所有性质。 3、轴对称图形,有三条对称轴。 0

七、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。

2、关于某条直线对称的两个图形是全等图形。

3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。 4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。 5、类似地,轴对称图形的性质有:

(1)轴对称图形对应点所连的线段被对称轴垂直平分。 (2)轴对称图形的对应线段、对应角相等。 —

(3)根据轴对称图形的性质可求作轴对称图形的对应点、对应线段或对应角,并由此能补全轴对称图形。 八、图案设计

1、作出简单平面图形经过轴对称后的图形,实际上是轴对称图形的性质的灵活运用。 2、作出简单平面图形经过轴对称后的图形的步骤: (1)首先要确定一个简单平面图形上的几个特殊点;

(2)然后利用轴对称的性质,作出其相应的对称点(对应点所连的线段被对称轴垂直平分)。 (3)分别连接其对称点,则可得其对称图形。 3、表达方式(以点M为例): |

(1)过点M作对称轴l的垂线,垂足为A;

’’’

(2)延长MA到M到,使MA=MA,则点M就是点M关于直线l的对称点。

(3)在复杂的作图中,也可以叙述为:作出点M关于直线l的对称点M. 4、在运用轴对称设计图案时,就注意以下几点: (1)要有明确的设计意图; (2)创意要新颖独特;

(3)设计出的图案要符合要求;

(4)能清楚地表达自己的设计意图和制作过程。 ;

5、图案的设计除采用对称的手段外,通常还综合采用旋转、倒置、重复等手段和形式。 6、设计的图案要美观、大方,积极向上,反映时代特色。 九、镜面对称

1、镜面对称的有关性质:

(1)任何一个平面图形(物体)在镜子中的像与它是可以重合的。因此,一个轴对称图形在镜子中的像仍是轴对称图形。

(2)若一个平面图形正对镜面,则其左(右)侧在镜中的像是其右(左)侧;

(3)若一个平面图形(物体)垂直于镜面摆放,则靠近镜面的部分,其像也靠近镜面; 2、关于数字0、1、3、8在镜面中像的两个结论: —

(1)如果写数字的纸条垂直于镜面摆放,则纸条上写的0、1、3、8所成的像与原来的数字完全一样。 (2)如果纸条正对镜面摆放,则纸条上写的0、1、8这三个数字在镜中的像和原来的数字完全一样。 3、像与物体到镜面的距离相等。

4、像与物体的对应点连线被镜面垂直平分。

5、由镜中的时间来判断真实时间是近几年来中考的一个热点。时间的表示有用一般数字表示的,也有直接用钟表来表示的。在判断时,大家要注意灵活利用镜面对称的知识来加以解决。

}

.

第六章 概率

)

事件 必然事件 不可能事件 不确定事件

游戏的公平性

概率 等可能性 概率的定义

概率 几何概率 设计概率模型

一、事件

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。 …

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为100%,则为必然事件;若事件发生的可能性为0,则为不可能事件;若事件不一定发生,即发生的可能性在0∽1之间,则为不确定事件。 6、简单地说,必然事件是一定会发生的事件;不可能事件是绝对不可能发生的事件;不确定事件是指有可能发生,也有可能不发生的事件。

7、表示事件发生的可能性的方法通常有三种: (1)用语言叙述可能性的大小。 (2)用图例表示。 (3)用概率表示。 二、等可能性 】

1、等可能性:是指几种事件发生的可能性相等。

2、游戏规则的公平性:就是看游戏双方的结果是否具有等可能性。

(1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的;

(2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性相同,游戏才是公平的。

(3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性一样即可。 三、概率

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1; ,

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0∽1之间,记作0(1)直接数数法:即直接数出所有可能出现的结果的总数n,再数出事件A可能出现的结果数m,利用概率公式P(A)mn直接得出事件A的概率。

(2)对于较复杂的题目,我们可采用“列表法”或画“树状图法”。 四、几何概率 ,

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。 2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系; (2)然后计算出各部分的面积; (3)最后代入公式求出几何概率。 五、设计概率模型(游戏或事件)

1、设计符合要求的简单概率模型(游戏或事件)是对概率计算的逆向运用。 2、设计通常分四步: *

(1)首先分析设计应符合什么条件;

(2)其次确定选用什么图形表示更合理;

(3)然后再按一定要求和操作经验来设计模型;

(4)最后再通过计算或其他方法来验证设计的模型是否符合条件。

]

·

七年级(下)数学试卷

(时间:120分钟 满分:120分 )

注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.

第Ⅰ卷(选择题 共30分)

一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的.)

1. 下列交通标志图案是轴对称图形的是( )

A.

'

B. C. D.

2. 下列计算正确的是( )

A.a2a3a2 B.a2a3a5 C.a3a3 D.(a)a 3. 如图,下列条件中,不能判定AD∥BC的是( ) A. ∠1=∠2 B. ∠3=∠4

C. ∠ADC+∠DCB=180° D. ∠BAD+∠ADC=180° ;

4. 下列长度的三条线段,能组成三角形的是( )

A. 2,3,4 B. 1,4,2 C. 1,2,3 D. 6,2,3

5. 如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )

A. ∠BCA=∠F B. BC∥EF C. ∠B=∠E D. ∠A=∠EDF

/

336. 一列火车从西安站出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达宝鸡车站减速停下,则能刻画火车在这段时间内速度随时间变化情况的是( )

[

7. 下列轴对称图形中,对称轴最多的是 ( )

A. 等腰直角三角形 B. 等边三角形

C. 半圆 D. 正方形

8. 如图,在△ABC中,AB=AC,且D在BC上,DE⊥AB于E,DF⊥BC交AC于点F, 若∠EDF=70°, 则∠AFD的度数是( ) A. 160° B. 150° C. 140° D. 120°

>

9. 如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,则图中的全等三角形对数共有 ( ) A. 1对 B. 2对 C. 3对 D. 4对

10. 一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( )

A. 6 B. 10 C. 18 D. 20

第Ⅱ卷(非选择题 共90分)

二、填空题(共6小题,每小题3分,计18分)

11. 已知一粒米的质量是千克这个数据用科学记数法表示为___________千克. ¥

12. 如图,若l1∥l1,∠1=45°,则∠2=______°

\\

CDAEB第14题图

13. 三角形三个内角的度数比为1∶2∶3,则这个三角形最大的内角的度数为______°

14. 如图所示,三角形纸片ABC,AB=10厘米,BC=7厘米,AC=6厘米.沿过点B的直线折叠这个三角形,

使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______厘米.

15. 按如图方式用火柴棍搭三角形,三角形的每一条边只用一根火柴棍,火柴棍的根数y(根)与三角形的个数x(个)之间的关系式为____________.

第2页(共6页)

\"

16. 向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.

三、解答题(第17、18、19、20题各8分,第21、22、23、24题各10分,计72分)

17. 计算

[

(1)(3分)利用整式乘法公式计算: 10397

(2)(5分)先化简,再求值:2b+(a+b)(a-b)-(a-b),其中a=-3,b=

#

221. 2

18. 如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的和是多少度并证明你的结论.

'

第3页(共6页)

19. 如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.

求证:AC=AD.

^

>

20. 一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋

中的小球搅匀,然后从中随意取出一个小球,请问 (1)取出的小球编号是偶数的概率是多少 (2)取出的小球编号是3的倍数的概率是多少 (3)取出的小球编号是质数的概率是多少

21. 在一次实验中,小亮把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂

物体质量x的一组对应值. 所挂质量x/kg 弹簧长度y/cm ' 0 18 1 .2 22 3 24 4 26 5 28 20 (1)上表反映了哪两个变量之间的关系哪个是自变量哪个是因变量 (2)当所挂物体重量为3千克时,弹簧多长不挂重物时呢 (3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗

22. 如图(1),B地在A地的正东方向,某一时刻,乙车从B地开往A地,1小时后,甲车从A地开往B

地,当甲车到达B地的同时乙车也到达A地. 如图(2),横轴x(小时)表示两车的行驶时间(从乙车出发的时刻开始计时),纵轴y(千米)表示两车与A地的距离.

,

问题:

(1)A、B两地相距多少千米

(2)l1和l2两段线分别表示两车距A地的距离y(千米)与行驶时间x(小时)之间的关系,请问哪一段表示甲车,哪一段表示乙车 (3)请问两车相遇时距A地多少千米 23. 作图 (1)(4分)如图(1),把大小为4×4的正方形方格分割成两个全等图形(例如图1),请在下图中,沿

着虚线画出两种不同的分法,把4×4的正方形方格分割成两个全等图形. .....

(2)(3分)如图(2),∠AOB内部有两点M和N,请找出一点P,使得PM=PN,且点P到∠AOB两边的距

离相等.(简单说明作图方法,保留作图痕迹)

?

(3)(3分)如图(3),要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短,请在图中用点Q标出奶站应建地点.(简单说明作图方法,不用证明)

>

第5页(共6页)

24. 资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞 击),撞击路线与水平格档所成的锐角等于..反弹路线与水平格档所成的锐角. 以图(1)为例,如果黑球A沿从A到O方向在O点处撞击EF边后将沿从O到C方向反弹,根据反弹原则可知∠AOE=∠COF,即∠1=∠2.

如图(2)和(3),EFGH是一个长方形的弹子球台面,有黑白两球A和B,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小) 探究(1):黑球A沿直线撞击台边EF哪一点时,可以使黑球A经台边EF反弹一次后撞击到白球B请在图(2)中画出黑球A的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则,

探究(2):黑球A沿直线撞击台边GH哪一点时,可以使黑球A先撞击台边GH反弹一次后,再撞击台边EF反弹一次撞击到白球B请在图(3)中画出黑球A的路线图,标出黑球撞击GH边的撞击点,简单说明作法,不用证明.

}

]

>

七年级数学(下)期末考试卷

一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)

1、计算(x1)(x1)= 。

2、如图,互相平行的直线是 。

3、如图,把△ABC的一角折叠,若∠1+∠2 =120°,则∠A = 。 4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

70°110°a70°

bADA1B第3题图2C2576514

mn第2题图2B1C第六题图5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。

6、如图,∠1 =∠2 ,若△ABC≌△DCB,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如

此下去,结果如下表:

所 剪 次 数 正三角形个数 则an21 4 ! 3 …4 13 … … n 2 7 an 10  。

1是一个完全平方式,那么k的值为 。 48、已知xkx9、近似数万精确到 位,有 位有效数字,用科学计数法表示

为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别

是 。

选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)

11、下列各式计算正确的是 ( )

A. a2+ a2=a4

B. a1a1 2aC. (3x)26x2 D. (xy)2x2y2

12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,

被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的

价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )

1111A. B. C. D.

9653 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s(单位:㎞)

随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )

s600400200s600400200s600400200s600400200

14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形

是 ( )

$

A

BCD 15、教室的面积约为60m²,它的百万分之一相当于 ( )

A. 小拇指指甲盖的大小 B. 数学书封面的大小 C. 课桌面的大小 D. 手掌心的大小

16、如右图,AB∥CD , ∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD= ( ) A. 110° B. 115° ° D. 130° AB EF¥

17、平面上4条直线两两相交,交点的个数是 ( )

A. 1个或4个 B. 3个或4个

CD C. 1个、4个或6个 D. 1个、3个、4个或6个

18、如图,点E是BC的中点,AB⊥BC, DC⊥BC,AE平分∠BAD,下列结论:

AB ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD=AB+CD,

四个结论中成立的是 ( )

A. ① ② ④ B. ① ② ③ @

C. ② ③ ④ D. ① ③ ④

三、解答题(共66分)

19、计算(每小题4分,共12分) (1)()EDC13223()2011()2012 (2)ab3,ab10,求a2b2的值 3222(3)〔(x2y)(xy)(x2y)5y〕÷(2y) 20、(6分) 某地区现有果树24000棵,

; 计划今后每年栽果树3000棵。 (1)试用含年数x(年)的式子

表示果树总棵数y(棵); (2)预计到第5年该地区有多少 棵果树

21、(8分)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB上建一个水泵站,向两村供水,用

以解决村民生活用水问题。 乙(1) 如果要求水泵站到甲、乙两村庄的距离相等,

甲' 水泵站M应建在河岸AB上的何处

(2)如果要求建造水泵站使用建材最省,

水泵站M又应建在河岸AB上的何处

AB22、(8分)超市举行有奖促销活动:凡一次性购物满300元者即可获得

一次摇奖机会。摇奖机是一个圆形转盘,被分成16等分,摇中

红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。一次性购物满300元者,如果不摇奖可返还现金15元。 …

(1)摇奖一次,获一等奖的概率是多少

(2)老李一次性购物满了300元,他是参与摇奖划算

还是领15元现金划算,请你帮他算算。

蓝黄蓝蓝蓝红黄 23、(8分)如图,已知△ABC中,AB = AC,点D、E分别在AB、AC上,且BD = CE,如何说明OB=OC

呢 A 解:∵AB=AC ∴∠A B C =∠A C B ( )

又∵BD = CE ( ) BC = CB ( )

DB∴△BCD≌△CBE ( )

}

OEC

∴∠( ) = ∠( ) ∴OB = OC ( )。

24、(8分)下表是1990年~2005年我国农村居民人均纯收入情况的统计表,根据表格数据,回答下面问题。

年份 纯收入(元) 1990 ! 686 (1) 把上表转换成象形统计图

(2)你能从图中获取哪些信息(写2条)

|

1995 1577 2000 2253 2005 3865 25、(8分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列

问题。

距离/千米 (1)玲玲到达离家最远的地方是什么时间离家多远

30 (2)她何时开始第一次休息休息了多长时间 2520 (3)她骑车速度最快是在什么时候车速多少

15 (4)玲玲全程骑车的平均速度是多少

10509101112131415时间/时:

26、(10分)把两个含有45°角的直角三角板如图放置,点D 在AC上连接AE、BD,试判断AE与BD

的关系,并说明理由。

一、耐心填一填( 共15空,每空两分,共30)

1、等腰三角形的三边长分别为:x+1、 2x+3 、9 。则x= 2.计算:x·x·x= ;

(-

2

3

(-x)·(-

1x)= ; 21022

)= ; (a+2b)( )=a-4b; 22

(2x-1)= 3、若a8,a,则amn122m3n

4已知,如图1,AC⊥BC,CD⊥AB于D,则图中有 个直角,它们是

,点C到AB的距离是线段 的长

C 1a b ABcD

图1 图2

5.如图2,直线a、b被直线c所截形成了八个角,若a∥b,那么这八个角中与∠1相等的角共有 个(不含∠1).

2y35x906、如果x、y互为相反数,满足a,那么a= 。

27.把a-16分解因式是

4

8.若x+kx+25是一个完全平方式,则k=

9七⑴班学生42人去公园划船,共租用10艘船。 大船每艘可坐5人,小船每艘可坐3人,每艘船都坐满。问大船、小船各租了多少艘设坐大船的有x人,坐小船的有y人,由题意可得方程组为: .

二:精心选一选:(只有一个答案正确,每题3分,共30分 10.下列命题中的假命题是( )

2

A.两直线平行,内错角相等 C.同位角相等,两直线平行

B.两直线平行,同旁内角相等 D.平行于同一条直线的两直线平行

11.在下列多项式的乘法中,可用平方差公式计算的是( )

A.(2+a)(a+2) C.(-x+y)(y-x)

B.(

2

11a+b)(b-a) 222

D.(x+y)(x-y)

12、能把任意三角形分成面积相等的两个三角形的线段是这个三角形的一条( ) A、角平分线 B、中线 C、高线 D、既垂直又平分的线段

13、如右上图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的

玻璃,那么最省事的办法是( )

(A)带①去 (B)带②去 (C)带③去 (D)带①和②去 AB

C

DE

图3 图4 14.如图4,AB∥ED,则∠A+∠C+∠D=( ) A.180°

B.270°

C.360°

D.0°

15.下列方程组中,是二元一次方程组的是( )

11x2y1xy12x32A、 B、 C、 D、 xyy3zxy7y43x2y416.不等式2(x-1)≥3x+4的解集是( )

A.x<-6 B.x≤-6 C.x>-6 D.x≥-6 17下列事件中,不确定事件是( )

A两直线平行,内错角相等; B拔苗助长;

C掷一枚硬币,国徽的一面朝上; D太阳每天早晨从东方升起。

18、为了解某校初一400名学生体重情况,从中抽查了50名学生的体重进行统计分析,这个问题中的总体是指( )

A、初一400名学生 B、被抽取的50名学生 C、初一400名学生体重情况 D、被抽取的50名学生的体重

19、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 ( ) A、

4112 B、 C、 D、

351515三、解答题

20、解方程(组)(2题共10分)

0.4x0.2y3.912(1)x2x1x1 (2)3 423xy1.75521、作图题(保留作图过程,共10分) (1)如图,作出△ABC关于直线l的对称图形;

(2)“西气东输”是造福子孙后代的创世纪工程。现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置。

公路

A BB

A C公路

四、证明(7+7分)

l22.填空并完成以下证明:

已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB. 证明:∵∠1=∠ACB(已知)∴DE∥BC( )

∴∠2= ( ) ∵∠2=∠3(已知) ∴∠3= ∴CD∥FH( ) ∴∠BDC=∠BHF( ) 又∵FH⊥AB(已知) ∴

23、如图,已知点B、D、E、C在同一直线上,ADEAED,BDCE 求证:ABAC

AADH12EB3FCBDEC

五、解答与证明(26)

222

24.已知,x∶y∶z=2∶3∶4,且xy+yz+xz=104,求2x+12y-9z的值. (6分)

25、如图,分别过点B、O为△ABC中ABC与ACB的平分线的交点,C作PBBO,PCCO,

A若A70°,你能够求出P的度数吗若能请写出解答过程。(6分)

26.某市公园的门票价格如下表所示:

某校初一年级甲乙两个班共100多人,去该

公园举行联欢活动,其中甲班有50多人乙班不票价 10元/人 8元/人 5元/人 足50人,如果以班为单位买门票,一共要付920

元;如果两个班一起买票,一共要付515元。甲、乙两班分别有多少人(6分) 27 探索与创新,你尽心试一试,肯定能成功!(第1题4分,第二题4分, 共8分)

1、 观察下面的点阵图和相应的等式,探究其中的规律:

(1)在④和⑤后面的横线上写出相应的等式2

购票人数 1~50人 51~100人 100人以上 PBOC③1+3+5=3④ .和⑤ . (2)猜想写出与

第n个点阵相对应的等式 .

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务