您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页2019年河北省高职单招考试十类(最新整理)

2019年河北省高职单招考试十类(最新整理)

来源:爱问旅游网
2019年河北省高职单招考试十类和对口电子电工类、计算机类联考文化素质考试(数学)考试大纲

一、考试总体要求

单招数学学科考试旨在测试中学数学基础知识、基本技能、基本方法,考查数学思维能力、归纳抽象、符号表示、运算求解以及运用所学数学知识和方法分析问题和解决问题的能力。复习考试范围包括代数、三角、平面解析几何和概率与统计初步四部分。矚慫润厲钐瘗睞枥庑赖賃軔朧碍鳝绢。考试内容的知识要求和能力要求作如下说明: (一)知识要求

1.了解:要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用。

2.理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。聞創沟燴鐺險爱氇谴净祸測樅锯鳗鲮。3.灵活运用:要求考生对所列知识能够综合运用。   (二)能力要求

1.逻辑思维能力:会对问题进行观察、比较、分析、综合、抽象与概括,会用演绎、归纳和类比进行推理,能准确、清晰、有条理地进行表述。残骛楼諍锩瀨濟溆塹籟婭骒東戇鳖納。2.运算能力:理解算理,会根据法则、公式、概念进行数式、方程的正确运算和变形,能分析条件,寻求与设计合理、简捷的运算途径。酽锕极額閉镇桧猪訣锥顧荭钯詢鳕驄。3.分析问题和解决问题的能力:能阅读理解对问题进行陈述的材料,能综合应用所学数学知识、思想和方法解决问题,并能用数学语言正确地加以表述。彈贸摄尔霁毙攬砖卤庑诒尔肤亿鳔简。二、复习考试内容  (一)代数  

  1.集合和简易逻辑

(1)了解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解集合与集合、元素与集合的关系符号,并能运用这些符号表示集合与集合、元素与集合的关系。謀荞抟箧飆鐸怼类蒋薔點鉍杂篓鳐驱。(2)理解充分条件、必要条件、充分必要条件的概念。 2.函数

(1)理解函数概念,会求一些常见函数的定义域。 

(2)了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。 (3)理解一次函数、反比例函数的概念,掌握它们的图象和性质,会求它们的解析式。

(4)理解二次函数的概念,掌握它的图象和性质,会求二次函数的解析式及最大值或最小值,能运用二次函数的知识解决有关问题 。厦礴恳蹒骈時盡继價骚卺癩龔长鳏檷。(5)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。(6)理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质  3.不等式和不等式组

(1)了解不等式的性质。

(2)会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式,会解一元二次不等式。会表示不等式或不等式组的解集 。 茕桢广鳓鯡选块网羈泪镀齐鈞摟鳎饗。(3)会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式。  4.数列

(1)了解数列及其通项、前n项和的概念。

1 / 6

(2)理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n项和公式解决有关问题。(3)理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题。5.导数

(1)理解导数的几何意义。 (2)会求多项式函数的导数。

(3)了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。鹅娅尽損鹌惨歷茏鴛賴縈诘聾諦鳍皑。(4)会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值。(二)三角

1.三角函数及其有关概念

(1)了解任意角的概念,理解象限角和终边相同的角的概念。  (2)了解弧度的概念,会进行弧度与角度的换算。

(3)理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。2.三角函数式的变换  

(1)掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算和化简。

(2)掌握两角和两角差、二倍角的正弦、余弦、正切的公式,会用它们进行计算和化简。 3.三角函数的图象和性质  

(1)掌握正弦函数、余弦函数的图象和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。 籟丛妈羥为贍偾蛏练淨槠挞曉养鳌顿。(2)了解正切函数的图象和性质  

(3)会求函数y=Asin(ωx+θ)的周期、最大值和最小值,会由已知三角函数值求角。4.解三角形

(1)掌握直角三角形的边角关系,会用它们解直角三角形。(2)掌握正弦定理和余弦定理,会用它们解斜三角形 (三)平面解析几何 1.平面向量

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

(2)掌握向量的加、减运算,掌握数乘向量的运算,了解两个向量共线的条件。(3)了解平面向量的分解定理。

(4)掌握向量的数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用,了解向量垂直的条件。

(5)了解向量的直角坐标的概念,掌握向量的坐标运算。

(6)掌握平面内两点间的距离公式、线段的中点公式和平移公式。   2.直线

(1)理解直线的倾斜角和斜率的概念,会求直线的斜率。(2)会求直线方程,会用直线方程解决有关问题。

(3)了解两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决简单的问题。    3.圆锥曲线

(1)了解曲线和方程的关系,会求两条曲线的交点。

(2)掌握圆的标准方程和一般方程以及直线与圆的位置关系,能灵活运用它们解决有关问题。(3)理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,会用它们解决有关问题。(四)概率与统计初步   1.排列、组合

(1)了解分类计数原理和分步计数原理。

2 / 6

(2)了解排列、组合的意义,会用排列数、组合数的计算公式。(3)会解排列、组合的简单应用题。   2.概率初步

(1)了解随机事件及其概率的意义。

(2)了解等可能性事件的概率的意义,会用计数方法和排列组合基本公式计算一些等可能性事件的概率。

(3)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

(4)了解相互事件的意义,会用相互事件的概率乘法公式计算一些事件的概率。 (5)会计算事件在n次重复试验中恰好发生k次的概率。   3.统计初步

  了解总体和样本的概念,会计算样本平均数和样本方差。三、考试形式及试卷结构

(一)考试采用闭卷笔试形式,全卷满分为150分,考试时间为60分钟。(二)试卷结构1.试卷内容比例(1)代数 约占60%(2)三角 约占10%(3)平面解析几何 约占20%(4)概率与统计初步 约占10%2.题型比例

(1)单选题 约占40%(2)判断题 约占35%(3)填空题 约占15%(4)解答题 约占10%3.试题难易比例

(1)较容易题 约占50%(2)中等难度题 约占40%(3)较难题 约占10%(三)样题

一、单选题(每小题6分,共60分)

1.一元二次方程x26x80的两根x1,x2分别为( )A.2,4B. 2,4C. 2,4D. 2,42.“x2y2”是“xy”的( )A. 充分不必要条件C. 充分必要条件

B. 必要不充分条件

D. 既不充分又不必要条件

3.已知直线y2xb过点(1,4),则b=( )A.1B. 2C. 3D. 44.已知A为ABC的内角,cosA4,则sinA( )53 / 6

3A. 53B. 53C. 4D.

345.在RtABC中,C为直角,a8,b6,则ABC的周长为( )A. 24B. 36C. 48D. 6.已知一圆的半径为3,则此圆的面积为( )A.3πB.6πC.9π7.不等式3x6的解集为( )A. (,2]B. [2,2]C. [2,)D. (,2][2,)D.12π

8.函数f(x)2x是( )A.奇函数

C.非奇非偶函数

2B.偶函数

D.既是奇函数又是偶函数

9.函数yx2x1的单调递减区间为( )A. (1,)B. (1,)C. (,1)D. (,1)10.已知抛物线的标准方程为y24x,则其准线方程为( )A. x1B. x1C. y1D. y1二、判断题(正确的涂T,错误的涂F,每小题5分,共50分)11.sin()sin.( )

12.若a和b都为实数,且ab=0,则a=b=0( )13.已知集合Axx23x40,则1A.( )14.若2,x,8成等比数列,则x4.( )

15.函数ylog2(x1)的定义域为全体实数.( )

16.已知数列0,3,8,15,24,,则它的一个通项公式为ann1.( )17.两直线2x4y70与4x8y110的位置关系是垂直.( )

218.已知

11,则ab.( )ab19.已知2x1,则x0.( )

20.盒内装有大小相同的3个白球1个黑球,从中摸出2个球,则2个球全是白球的概率为三、填空题(每小题6分,共24分)

4 / 6

1.( )22,半径R为3,则此扇形的弧长为.322.已知向量a(1,2),则向量的模a.

21.已知一扇形OAB的圆心角为

23.平面上有4个不同的点,其中任意三点不在同一条直线上,过任意两点作一条直线,则共能作出条不同的直线.預頌圣鉉儐歲龈讶骅籴買闥龅绌鳆現。24.已知离散型随机变量的概率分布为则P(1).

p00.12120.3630.24四、计算题(从以下二题中任选一题进行作答,共16分)25.在等比数列{an}中,已知首项a12,公比q2,求:(1)第7项a7;(2)前7项的和S7.

26.已知椭圆方程为9x216y2144,求:

(1)椭圆的焦点坐标;(2)椭圆的离心率.参

一、单选题(每题6分,共60分)1---5 CBBAA 6---10 CBACB

二、判断题(正确的涂T,错误的涂F,每题5分,共50分)11---15TFFTF16---20TFFTT

三、填空题(每题6分,共24分)21.2

22.5

23.6

24.0.28四、计算题(从以下两题中任选一题进行作答,共16分)25.解:(1)由公式ana1qn1 得 -------------4分

a7a1q6-------------2分

∴a7226128

-------------2分

5 / 6

a1(1-qn)(2)由公式sn=得

1-q -------------2分

------------4分

2(127)s712s72

26.解: 9x216y2144------------2分

x2y21 169------------4分

(1)由题意可得:a216 ,b29a4,b3c2a2b27,c7 -------------4分

又因为椭圆焦点在x轴上,

所以焦点坐标为(7,0),(7,0) (2)由椭圆离心率e------------4分

c 可得:a------------4分

e7 46 / 6

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务