您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页资阳市2012—2013学年度高中二年级第一学期期末质量检测理科数学答案

资阳市2012—2013学年度高中二年级第一学期期末质量检测理科数学答案

来源:爱问旅游网


资阳市2012—2013学年度高中二年级第一学期期末质量检测

理科数学参及评分意见

一、选择题:本大题共12个小题,每小题5分,共60分. 1-5.DBCDA;6-10. CACAB;11-12.DA

二、填空题:本大题共4个小题,每小题4分,共16分.

41 13. 9;14. ;15.;16. ①②④⑤.

33三、解答题:本大题共6个小题,共74分. 17.解: (Ⅰ)由频率分布直方图得第七组频率为: 1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,

∴第七组的人数为0.06×50=3. ··························································································· 3分 由各组频率可得以下数据:

组别 样本数 一 2 二 4 三 10 四 10 五 15 六 4 七 3 八 2 ····································································································································· 6分 (Ⅱ)第二组中四人可记为a、b、c、d,其中a为男生,b、c、d为女生,第七组中三人可记为1、2、3,其中1、2为男生,3为女生,所以基本事件有12个.

实验小组中恰有一男一女的事件有1b,1c,1d,2b,2c,2d,3a,共7个, ································· 10分

7因此实验小组中恰有一男一女的概率是. ······································································· 12分

1218. (Ⅰ)证明: 易知AP⊥BP,由AA1⊥平面PAB, 得AA1⊥BP, 且AP∩AA1=A, 所以BP⊥平面PAA1, 又BP平面A1PB,

故平面A1PB平面A1AP. ··································································································· 6分 (Ⅱ)解:由题意A1AAP,A1AAB,A1ABP,APPB,PBA1P, ································ 9分 又在三棱锥A1APB的6条棱中,任取2条棱的基本事件有15种.

51故互相垂直的概率P. ·························································································· 12分

15319. 解:(Ⅰ)茎叶图 ·········································································································· 3分 统计结论:(写出以下任意两个即可) ·········································································· 5分 ①甲批树苗比乙批树苗高度整齐;

②甲批树苗的高度大多数集中在均值附近,乙批树苗的高度

资阳高二数学(理科)答案第1页(共5页)

分布较为分散;

③甲批树苗的平均高度小于乙批树苗的平均高度;

④甲批树苗高度的中位数为27 cm,乙批树苗高度的中位数为28.5 cm.

1(Ⅱ)x甲=[37+21+31+20+29+19+32+23+25+33]=27,

101································· 7分 x乙=[10+30+47+27+46+14+26+10+44+46]=30. ·

10∴甲批树苗中高度高于平均数27的是:37,31,29,32,33,共5株,

乙批树苗中高度高于平均数30的是:47,46,44,46共4株. ······································ 9分 新的样本有9株树苗,从中任取2株的基本事件有36个, 其中“一株来自甲批,一株来自乙批”为事件A,

包含的基本事件有5×4=20个,················································································ 11分

205∴P(A)==. ········································································································ 12分

36920. (Ⅰ)证明: 以B为原点建立坐标系,得下列坐标: B(0,0,0),A(1,0,0),C(0,0,1),E(0,1,0)

2222a,0,1a),N(a,a,0), 222222··························································································· 2分 MN(0,a,a1), ·

2222设MNBCBE,即(0,, a,a1)=(0,0,1)+(0,1,0)

222222∴=a,=a-1,所以当=a,=a-1时,MN∥平面BCE,又MN不在

2222 F(1,1,0),M(平面BCE内,NM∥平面BCE. ···················································································· 5分

22(Ⅱ)解:由(Ⅰ)知,MN(0,a,a1)

2222∴|MN|2(0,a,a1)2a22a1,∴|MN|a22a1.

22∵|MN|a22a1=(a∴当a221), 222时,MN的长最小. ················································································ 8分 22111(Ⅲ)当a时,MN的中点为G(,,),

2244111111········································································ 10分 GB(,,),GA(,,) ·

244244GAGB1=. ·所求二面角的余弦值cos·························································· 12分

3|GA||GB|资阳高二数学(理科)答案第2页(共5页)

(用其它方法做的可参照给分)

21.解: 设事件A为“方程x22axb20有实根”,当a≥0, b≥0时,

方程x22axb20有实根的条件为a≥b. ····························································· 2分 (Ⅰ)基本事件共有12个(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0), (2,1),(2,2),(2,3),(3,0),(3,1)(3,2),(3,3),(4,0), (4,1), (4,2), (4,3)其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含14个基本事件,故事件A发生的概率为

147········································································································ 6分 .·

2010 (Ⅱ)试验的全部结果所构成的区域为{(a,b)|0≤a≤4,0≤b≤3}.构成事件A的区域为{(a,b)|0≤a≤4,0≤b≤3},即如变式答图P(A)的阴影区域所示. ………………………………………9分

1343252所以所求的概率为P(A).…………12分

34822. 解法1:(Ⅰ)连结BG,则BG是BE在面ABD的射影,

即∠EBG是A1B与平面ABD所成的角.设F为AB中点,连结EF、FC,∵D、E分别是CC1、A1B的中点,又DC⊥平面ABG,

∴CDEF为矩形. 连结DF,G是△ADB的重心,∴GFD. ···································· 2分

1 在直角三角形EFD中,EF2=FG·FD=FD2,

3126∵EF=1∴FD=3.于是ED=2,EG==,

33∵FG=ED=2,∴AB=22,A1B=23,EB=3, ∴sinEBG=

6127EG==,∴cosEBG 333EB3∴A1B与平面ABD所成的角是cosEBG7. ························································· 5分 3(Ⅱ)解法一:∵ED⊥AB,ED⊥EF,又EF∩AB=F,∴ED⊥面A1AB, 又EDØ面AED,∴平面AED⊥平面A1AB,且面AED∩面A1AB=AE. 作A1K⊥AE,垂足为K,

∴A1K⊥平面AED.即A1K是A1到平面AED的距离. ················································· 7分 在△A1AB1中,A1K=

A1AA1B122226, AB1323∴A1到平面AED的距离为26. ················································································· 9分 3资阳高二数学(理科)答案第3页(共5页)

解法二:连结A1D,VA1ADEVDA1AE.∵ED⊥AB,ED⊥EF,又EF∩AB=F,

∴ED⊥平面A1AB,设A1到平面AED的距离为h, ·················································· 7分

1则 SAEDhSA1AEED,又SA1AEA1AAB2,

4162226, ∴h. SAEDAEED2236226即A1到平面AED的距离为.················································································· 9分

31(Ⅲ)由(Ⅰ)知VDEABCVAEFCDVBEFCDABSEFCD, ··········································· 11分

3∵ABC 是等腰直角三角形, AB=22,∴ACBC2,∴CF2,又EF1,

114∴VDEABCABSEFCD2212 ······························································· 14分

333解2: (Ⅰ)连接BG,则BG是BE在面ABD 内的射影,即A1BG是A1B与平面ABD所成的角. 如图所示,建立空间直角坐标系Cxyz,设CACB2a,

2a2a1则A(2a,0,0),B(0,2a,0),D(0,0,1),A1(2a,0,2),E(a,a,1),G(,,)

333aa2且GE(,,),BD(0,2a,1). ················································································· 2分

33322由题设GEBD,从而有GEBDa20. 解得a1.

33241∴BA1(2,2,2),BG(,,).

33314BA1BG73∴cosA1BG. 13|BA1||BG|232137故A1B与平面ABD 所成角的余弦值为cosA1BG. ··········································· 5分

3 (Ⅱ)由(Ⅰ)有A(2,0,0),A1(2,0,2),E(1,1,1),D(0,0,1).故 AEED(1,1,1)(1,1,0)0,AA1ED(0,0,2)(1,1,0)0. ∴ED平面AA1E. 又ED平面AED,∴平面AED⊥平面AA1E.又面AED面AA1EAE, 作A1KAE,垂足为K,则A1K平面AED,

即A1K是A1到平面AED的距离. ·················································································· 7分 连接EB1,在RtA1AB1中, A1K故A1到平面AED的距离为(Ⅲ) ∵VDEABCVEABDA1AA1B122226. AB132326. ·················································································· 9分 31111VCABDVEABDVDABCEGABDFCDABAC

3232资阳高二数学(理科)答案第4页(共5页)

221由(Ⅰ)知A(2,0,0),B(0,2,0),E(1,1,1),G(,,), ·························································· 11分

3332216, AB22,GE(1)2(1)2(1)23333 ∵ABC 是等腰直角三角形,∴ACBC2,∵AA12,D是CC1的中点,CD1, ∴ADBD=5,设F为AB中点,则DFAB,且DF3, ····························· 13分 161114∴VDEABC=·············································· 14分 223122.

332323资阳高二数学(理科)答案第5页(共5页)

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有 湘ICP备2023022495号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务