您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页线性回归方程高考题精编版

线性回归方程高考题精编版

来源:爱问旅游网


线性回归方程高考题

GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

线性回归方程高考题

1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:

3 2.5 4 3 5 4 6 4.5 (1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

(参考数值:

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:

使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求:

(1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号 x y xy x2

1 2 3 4 5 ∑ 2 3 4 5 6 2.2 3.8 5.5 6.5 7.0 (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:

零件的个数x(个) 2 加工的时间y(小2.5 时) 3 4 4.5 3 4 5 (1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程 (3)试预测加工10个零件需要多少时间

,并在坐标系中画出回归直线;

(注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:

3 66 4 69 5 73 6 81 7 89 8 90 9 91 已知:

(Ⅰ)画出散点图;

(1I)求纯利与每天销售件数之间的回归直线方程.

5、某种产品的广告费用支出与销售额之间有如下的对应数据:

2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程;

(3)据此估计广告费用为10时,销售收入的值.

6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:

x y 3 2.5 4 3 5 4 6 4.5 (I)请画出上表数据的散点图;

(II)请根据上表提供的数据,求出y关于x的线性回归方程;

(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考公式及数据: ,)

7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:

广告费支出x 2 销售额y 30 4 40 5 60 6 50 8 70 (1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗? (2)求y关于x的回归直线方程;

(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)

8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:

时间t(s) 5 深度y(m) 6 10 10 15 10 20 13 30 16 (1)画出散点图;

(2)试求腐蚀深度y对时间t的回归直线方程。 参考答案 一、计算题 1、解:(1) (2)

序号 l 2 3 3 4 5 2.5 3 4 7.5 12 20 9 16 25

4 6 18 4.5 14 27 66.5 36 86 所以:

所以线性同归方程为:(3)=100时,

比技术改造前降低19.65吨标准煤. 2、解:(1) 填表 序号 1 2 3 4 5 ∑ 2 3 4 5 6 20 2.2 4.4 4

,所以预测生产100吨甲产品的生产能耗

x y xy x2 3.8 11.4 9 5.5 22.0 16 6.5 32.5 25 7.0 42.0 36 25 112.3 90 所以

将其代入公式得

(2) 线性回归方程为=1.23x+0.08

(3) x=10时,=1.23x+0.08=1.23×10+0.08=12.38 (万元) 答:使用10年维修费用是12.38(万元)。 3、解:(1)散点图如图

(2)由表中数据得:回归直线如图中所示。

(3)将x=10代入回归直线方程,得∴预测加工10个零件需要8.05小时。 4、解:(Ⅰ)散点图如图:

(小时)

(Ⅱ)由散点图知,与有线性相关关系,设回归直线方程:,

∵,

∴.

故回归直线方程为

5、解:(1)作出散点图如下图所示: (2)求回归直线方程.

=(2+4+5+6+8)=5,

×(30+40+60+50+70)=50,

=22+42+52+62+82=145, =302+402+602+502+702=13500 =1380.

=6.5.

因此回归直线方程为

(3)=10时,预报y的值为y=10×6.5+17.5=82.5.

6、解:(I)如下图

(II)=32.5+43+54+64.5=66.5

==4.5 , ==3. 5

故线性回归方程为

(III)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为 0.7100+0.35=70.35.

故耗能减少了90-70.35=19.65(吨). 7、解:(1)(略) (2)y=6.5x+17.5

(3) 30.5(百万元)健康文档 放心下载 放心阅读

8、(1)略 (2)y=14/37x+183/37

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务