您好,欢迎来到爱问旅游网。
搜索
您的当前位置:首页【CN110011704A】用于无线能量与数据同步传输的下行数据传输装置和方法【专利】

【CN110011704A】用于无线能量与数据同步传输的下行数据传输装置和方法【专利】

来源:爱问旅游网
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110011704 A(43)申请公布日 2019.07.12

(21)申请号 201910233924.9(22)申请日 2019.03.26

(71)申请人 清华大学深圳研究生院

地址 518055 广东省深圳市南山区西丽大

学城清华校区(72)发明人 唐仙 彭侃 麦宋平 王志华 (74)专利代理机构 深圳新创友知识产权代理有

限公司 44223

代理人 王震宇(51)Int.Cl.

H04B 5/00(2006.01)H04B 5/02(2006.01)H04L 27/20(2006.01)H04L 27/22(2006.01)H04L 25/49(2006.01)

权利要求书1页 说明书5页 附图2页

(54)发明名称

用于无线能量与数据同步传输的下行数据传输装置和方法(57)摘要

一种用于无线能量与数据同步传输的下行数据传输装置和方法,该装置包括发射端和接收端,所述发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,所述接收端对接收的信号进行相应的解调以得到所述数据。本发明的用于无线能量与数据同步传输的下行数据传输装置和方法能够使下行数据传输对系统能量传输效率的影响最小化,且调制解调电路CN 110011704 A实现简单,成本低。

CN 110011704 A

权 利 要 求 书

1/1页

1.一种用于无线能量与数据同步传输的下行数据传输装置,包括发射端和接收端,其特征在于,所述发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,所述接收端对接收的信号进行相应的解调以得到所述数据。

2.如权利要求1所述的用于无线能量与数据同步传输的下行数据传输装置,其特征在于,所述发射端包括D类功率放大器和第一LC谐振电路,所述D类功率放大器的输出端连接所述第一LC谐振电路,所述D类功率放大器将所述发射端的直流信号转化为交流信号,所述接收端包括与所述第一LC谐振电路相对应用于接收信号的第二LC谐振电路,所述第一LC谐振电路和所述第二LC谐振电路在收发信号时处于谐振状态,所述发射端将以脉冲相位调制PPM进行数据调制的占空比不变的信号作为所述D类功率放大器的控制信号,使得所述D类功率放大器的输出V1的均方根值不变,从而所述D类功率放大器的输出V1通过所述第一LC谐振电路和所述第二LC谐振电路进行无线能量传输的功率传输效率保持或接近恒定。

3.如权利要求1或2所述的用于无线能量与数据同步传输的下行数据传输装置,其特征在于,所述接收端中采用脉宽调制PWM控制的稳压整流器。

4.如权利要求3所述的用于无线能量与数据同步传输的下行数据传输装置,其特征在于,所述接收端还包括连接在所述稳压整流器的输出端的输出电容CL,以及所述输出电容CL和地之间连接的采样电阻RS2,所述接收端通过检测所述采样电阻RS2的电压VS2的峰值波动差值△VS,来解调输入数据。

5.如权利要求4所述的用于无线能量与数据同步传输的下行数据传输装置,其特征在于,所述接收端还包括比较器,通过所述比较器将电压VS2与参考电压Vref2进行比较以获得解调数据。

6.如权利要求5所述的用于无线能量与数据同步传输的下行数据传输装置,其特征在于,所述接收端还包括处理器,所述处理器将所述比较器的输出在一个数据周期中保持高电平的持续时间计数并与没有数据传输的情况区分开,以最小化噪声的影响。

7.如权利要求6所述的用于无线能量与数据同步传输的下行数据传输装置,其特征在于,所述处理器为FPGA。

8.一种用于无线能量与数据同步传输的下行数据传输方法,其特征在于,使用如权利要求1至7任一项所述的下行数据传输装置进行无线能量与数据同步传输,其中在所述下行数据传输装置的发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,在所述下行数据传输装置的接收端对接收的信号进行相应的解调以得到所述数据。

2

CN 110011704 A

说 明 书

1/5页

用于无线能量与数据同步传输的下行数据传输装置和方法

技术领域

[0001]本发明涉及无线充电技术领域,特别是涉及一种用于无线能量与数据同步传输的下行数据传输装置和方法。

背景技术

[0002]无线充电应用广泛,在植入式生物医学设备,移动电子设备和电动汽车中都有所应用。在无线充电的大多数应用中,不仅仅需要传输能量,数据也需要与能量并行传输。例如,一些控制信号需要从能量的发射端传输到接收端,这些信号被称为下行数据;相应地,接收端中的反馈信息则需要被传回发射端,这些信号被称为上行数据。[0003]在无线能量和数据同步传输系统的设计中,有几个指标是非常重要的,如能量传输效率,数据传输速率,实现成本等。利用额外的线圈或天线在不同的链路中分别传输能量与数据是一个比较直接的无线能量和数据同步传输系统的实现方式。这种方法可以较为容易的实现高数据传输速率,但是由于需要额外的部件,这种方法实现成本很高,不利于实际应用。另一种实现方式是采用合适的调制方案在同一链路上传输能量和数据。负载移位键控(LSK)就是其中一种调制方案并被广泛使用。LSK通过改变输出电容和电阻来调节接收端的负载,以此传输不同的数据。循环开关键控(COOK)也是一种很典型的调制方案,这种方案通过是否短路接收端LC谐振回路来传输信号。但是这些调制方案仅用于上行数据传输。也可以通过电容耦合和幅移键控来实现无线能量和下行数据的同步传输,并且数据的传输不会对系统整体的能量传输效率造成过多影响,但由于需要多组线圈进行数据的调制与解调,因此成本高,设计复杂。综上所述,亟需提出新的用于无线能量和数据同步传输系统的下行数据传输方案。

发明内容

[0004]本发明的主要目的在于克服现有技术的不足,提供一种用于无线能量与数据同步传输的下行数据传输装置和方法,能够使下行数据传输对系统能量传输效率的影响最小化,且调制解调电路实现简单,成本低。[0005]为实现上述目的,本发明采用以下技术方案:

[0006]一种用于无线能量与数据同步传输的下行数据传输装置,包括发射端和接收端,所述发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,所述接收端对接收的信号进行相应的解调以得到所述数据。

[0007]进一步地:

[0008]所述发射端包括D类功率放大器和第一LC谐振电路,所述D类功率放大器的输出端连接所述第一LC谐振电路,所述D类功率放大器将所述发射端的直流信号转化为交流信号,所述接收端包括与所述第一LC谐振电路相对应用于接收信号的第二LC谐振电路,所述第一

3

CN 110011704 A

说 明 书

2/5页

LC谐振电路和所述第二LC谐振电路在收发信号时处于谐振状态,所述发射端将以脉冲相位调制PPM进行数据调制的占空比不变的信号作为所述D类功率放大器的控制信号,使得所述D类功率放大器的输出V1的均方根值不变,从而所述D类功率放大器的输出V1通过所述第一LC谐振电路和所述第二LC谐振电路进行无线能量传输的功率传输效率保持或接近恒定。[0009]所述接收端中采用脉宽调制PWM控制的稳压整流器。

[0010]所述接收端还包括连接在所述稳压整流器的输出端的输出电容CL,以及所述输出电容CL和地之间连接的采样电阻RS2,所述接收端通过检测所述采样电阻RS2的电压VS2的峰值波动差值△VS,来解调输入数据。[0011]所述接收端还包括比较器,通过所述比较器将电压VS2与参考电压Vref2进行比较以获得解调数据。

[0012]所述接收端还包括处理器,所述处理器将所述比较器的输出在一个数据周期中保持高电平的持续时间计数并与没有数据传输的情况区分开,以最小化噪声的影响。[0013]所述处理器为FPGA。

[0014]一种用于无线能量与数据同步传输的下行数据传输方法,使用所述的下行数据传输装置进行无线能量与数据同步传输,其中在所述下行数据传输装置的发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,在所述下行数据传输装置的接收端对接收的信号进行相应的解调以得到所述数据。

[0015]本发明具有如下有益效果:

[0016]本发明提供的用于无线能量和数据同步传输系统的下行数据传输装置和方法不仅实现起来非常简单,而且能够使得数据和能量通过相同的链路传输而能量传输效率几乎不受影响,能量传输效率高,成本低,可以有效地应用在多数领域。

[0017]根据本发明的用于无线能量和数据同步传输系统的下行数据传输装置和方法,其发射端易于实现,结构简单,传输效率高,而且发射端的信号调制只需要通过简单的组合逻辑运算即可实现,而接收端信号的解调也同样易于实现。在较佳的实施例中,接收端只要通过一个比较器就可以实现信号的解调。更优地,将比较器输出进一步处理,使比较器的输出在一个数据周期中保持高电平的持续时间被计数并与没有数据传输的情况区分开,最小化噪声的影响。

附图说明

[0018]图1为本发明用于无线能量和数据同步传输系统的下行数据传输装置和方法所采用的脉冲相位调制PPM的原理示意图;

[0019]图2为本发明用于无线能量和数据同步传输系统的下行数据传输装置的实施例的电路结构图;

[0020]图3为本发明的实施例中数据接收端的关键信号波形图。

具体实施方式

[0021]以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,

4

CN 110011704 A

说 明 书

3/5页

而不是为了限制本发明的范围及其应用。[0022]在一种实施例中,一种用于无线能量与数据同步传输的下行数据传输装置,包括发射端和接收端,所述发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,所述接收端对接收的信号进行相应的解调以得到所述数据。

[0023]本发明用于无线能量和数据同步传输系统的下行数据传输装置和方法所采用的脉冲相位调制PPM的原理如图1所示。PPM是利用脉冲相位不同来发送不同数据的调制方案。当脉冲信号的相位随调制而变化时,脉冲的宽度或占空比保持不变。图1中包含没有数据调制的原始脉冲信号和用PPM调制数据“00011011”之后的脉冲信号。不难看出,PPM调制之后的信号与未调制的原始信号具有相同的占空比。作为比较,图1中也示出了开关键控(OOK)的调制方案。假设在要发送的原始数据码流中,二进制数“0”和“1”的比例是相等的。我们称信号中高电平的时间占整个信号时长的比例为该信号的标记率,那么没有调制的原始信号的标记率为50%,PPM调制信号的标记率也为50%,但是OOK调制的信号标记率只有25%。考虑到这些信号的幅度相同,低标记率则意味着低平均功率。这表明采用OOK调制的系统的平均功率只有PPM调制的一半,而且本发明采用PPM调制的平均功率与无调制时系统的平均功率是相同的。当脉冲变窄时,以上结论仍然有效。这表明,本发明提供的采用PPM调制的装置和方法,能够使数据传输对无线能量传输的影响最小。[0024]参阅图2,在优选的实施例中,本发明用于无线能量与数据同步传输的下行数据传输装置的发射端包括D类功率放大器PA和第一LC谐振电路L1-C1,所述D类功率放大器PA的输出端连接所述第一LC谐振电路L1-C1,所述D类功率放大器将所述发射端的直流信号转化为交流信号。用于无线能量与数据同步传输的下行数据传输装置的接收端包括与所述第一LC谐振电路L1-C1相对应用于接收信号的第二LC谐振电路L2-C2。所述第一LC谐振电路L1-C1和所述第二LC谐振电路L2-C2在收发信号时处于谐振状态。所述发射端将以脉冲相位调制PPM进行数据调制的占空比不变的信号作为所述D类功率放大器PA的控制信号,使得所述D类功率放大器PA的输出V1的均方根值不变,从而所述D类功率放大器PA的输出V1通过所述第一LC谐振电路L1-C1和所述第二LC谐振电路L2-C2进行无线能量传输的功率传输效率保持或接近恒定。[0025]参阅图2,在优选的实施例中,所述接收端中采用脉宽调制PWM控制的稳压整流器,其能够获得较高的效率。[0026]参阅图2,在优选的实施例中,所述接收端还包括连接在所述稳压整流器的输出端的输出电容CL,以及所述输出电容CL和地之间连接的采样电阻RS2,所述接收端通过检测所述采样电阻RS2的电压VS2的峰值波动差值△VS,来解调输入数据。[0027]参阅图2,在更优选的实施例中,所述接收端还包括比较器CMP2,通过所述比较器CMP2将电压VS2与参考电压Vref2进行比较以获得解调数据。[0028]在更优选的实施例中,所述接收端还包括处理器,所述处理器将所述比较器的输出在一个数据周期中保持高电平的持续时间计数并与没有数据传输的情况区分开,以最小化噪声的影响。所述处理器优选采用FPGA。[0029]如图2所示,在更优选的实施例中,所述接收端还包括稳压整流器中的脉宽调制

5

CN 110011704 A

说 明 书

4/5页

(PWM)模块,所述模块包括误差放大器EA、比较器CMP1、缓冲器BUF和两个开关管Ma和Mb。其中通过将稳压整流器的输出Vdc通过反馈电路返回,反馈信号经过误差放大器EA与参考电平Vref1相比较,以此判断是否短路LC谐振回路,通过控制输入来调整输出,使输出Vdc稳定在预期电平。其中,误差放大器EA的输出与斜坡信号RAMP通过比较器CMP1相比较,产生一个具有一定占空比的脉冲信号PWM,PWM信号为高时,控制开关管Ma和Mb导通;PWM信号为低时,控制开关管Ma和Mb关断。

[0030]在另一种实施例中,一种用于无线能量与数据同步传输的下行数据传输方法,使用前述任一实施例的下行数据传输装置进行无线能量与数据同步传输。其中在所述下行数据传输装置的发射端使用经以脉冲相位调制PPM进行数据调制的脉冲信号作为发射信号,使得脉冲信号的相位随调制而变化而脉冲信号的占空比保持不变,从而经调制之后的发射信号与未经调制的原始脉冲信号具有相同的占空比,在所述下行数据传输装置的接收端对接收的信号进行相应的解调以得到所述数据。

[0031]以下结合图2进一步描述本发明具体实施例的特征、原理和优点。[0032]本发明采用脉冲相位调制的一个典型应用系统如图2所示。图2是应用脉冲相位调制作为下行数据传输方法的一个无线能量和数据同步传输系统,在发射端使用D类功率放大器PA,并在接收端中采用脉宽调制(PWM)控制的稳压整流器。这样的发射端结构简单,易于实现,效率高。信号的调制只需要进行简单的组合逻辑运算即可实现。信号的解调也只要通过一个比较器就可以实现。

[0033]该系统的工作原理如下:在能量传输链路中,D类功放PA由脉冲信号Fres及其驱动电路控制,Fres频率为LC谐振频率。它将发射端的直流信号转化为交流信号。D类功放PA的输出V1是类似于Fres的脉冲信号。D类功放PA中的MOSFET的漏源电压通常非常小,可以忽略不计,因此V1的幅度几乎等于功放的直流电源电压Vin。此外,V1的均方根值取决于Vin和Fres的占空比。

[0034]从谐振电路L2-C2看向负载的等效负载可等效为一个电阻RLeff。由于谐振电路L1-C1和L2-C2处于谐振状态,因此V1处等效负载也是阻性负载。因此,对于相同的链路和负载条件,使V1的均方根值不变,则输出功率和PA的输入功率以及功率传输效率几乎是恒定的。由于V1的均方根值取决于Vin和Fres的占空比,因此,采用脉冲相位调制PPM,由于PPM调制之后的信号与未调制的原始信号具有相同的占空比,故数据调制方案不影响Vin和Fres的占空比,从而使V1的均方根值不变,能够避免无线系统中的传输功率受到影响(不引入额外的功耗的情况下)。因此,本发明实施例采用以PPM进行数据调制的信号在发射端作为D类功放的控制信号,所实现的数据传输链路不会对能量传输链路产生影响。[0035]同时,能量接收端中的数据解调很容易就能实现。理论上,在发射端有数据发送时,D类功放PA的控制信号Fres的一些周期的相位将有所改变。因此,当发送数据“1”时,V1的两个相邻周期中的高电平比没有数据传输时(或称发送数据“0”时)更接近。因此,当发送数据“1”时,发射端和接收端的LC电流的瞬态幅度也会变化。在输出电容CL和地之间连接采样电阻RS2。如图3所示,当出现数据“1”后,VS2的峰值具有明显的波动:会先减小然后增大。因此,我们可以检测△VS来解调输入数据。[0036]信号解调可以通过检测△VS来实现。因此这里的解调方案是将VS2与参考电压Vref2进行比较。理论上,比较器的输出可以直接识别为解调数据。但由于实际测量中不可避免地

6

CN 110011704 A

说 明 书

5/5页

存在噪声,这样直接比较的做法会使得误码率可能相对较高。为了最小化噪声的影响,我们将比较器输出由FPGA进一步处理,使比较器的输出在一个数据周期中保持高电平的持续时间被计数并与没有数据传输的情况区分开。虽然RS2引入了一定的功耗,但它对能量传输效率影响很小,因为能量传输效率主要取决于考虑整个接收端在发射端中的等效阻抗,而RS不会对等效阻抗引入比较大的变化。

[0037]以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

7

CN 110011704 A

说 明 书 附 图

1/2页

图1

图2

8

CN 110011704 A

说 明 书 附 图

2/2页

图3

9

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- awee.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务