Nanotechnology19(2008)405504(7pp)
NANOTECHNOLOGY
doi:10.1088/0957-4484/19/40/405504
AmorphousTiO2nanotubearraysforlow-temperatureoxygensensors
HaoFengLu1,2,FengLi2,GangLiu2,Zhi-GangChen2,
Da-WeiWang2,Hai-TaoFang3,GaoQingLu4,ZhouHuaJiang1andHui-MingCheng2
SchoolofMaterialandMetallurgy,NortheasternUniversity,No.11,Lane3,WenHuaRoad,Shenyang110004,People’sRepublicofChina2
ShenyangNationalLaboratoryforMaterialsScience,InstituteofMetalResearch,ChineseAcademyofSciences,72WenHuaRoad,Shenyang110016,People’sRepublicofChina3
SchoolofMaterialsScienceandEngineering,HarbinInstituteofTechnology,92WestDazhiStreet,Harbin150001,People’sRepublicofChina4
ARCCentreofExcellenceforFunctionalNanomaterials,SchoolofEngineeringandAustralianInstituteofBioengineeringandNanotechnology,UniversityofQueensland,Brisbane,QLD4072,Australia
E-mail:jiangzh@smm.neu.edu.cnandcheng@imr.ac.cn
1
Received5June2008,infinalform10July2008Published20August2008
Onlineatstacks.iop.org/Nano/19/405504
Abstract
Titaniananotubearrays(TNTA)weresynthesizedonatitaniumsubstrateusinganodic
oxidationinanelectrolytecontainingammoniumfluorideandevaluatedforlow-temperatureoxygensensing.Theirsensingpropertiesweretestedatdifferenttemperatures(50,100,150,200,250and300◦C)whenexposedtovariousoxygenconcentrations.Theas-preparedTNTAareamorphousandexhibitmuchhighercarrierconcentrationthanthatofannealedTNTA.SuchamorphousTNTAshowmuchhighersensitivitythanthatofannealedTNTA,SrTiO3andGa2O3sensors.Thissampledemonstratesthelowestdetectableoxygenconcentrationof200ppm,excellentrecoveryandgoodlinearcorrelationat100◦C.TheseresultsindicatethatTNTAareindeedveryattractiveoxygen-sensingmaterials.
(Somefiguresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
Theelectricalconductivityofsemiconductingmetaloxideschangeswhenexposedtoactivegasatmospheres[1–3],whichiswhysemiconductingmetaloxideshavebeenwidelyinvestigatedascandidatesforgassensing.Severalmetaloxides,suchasSnO2,ZnO,TiO2,Ga2O3,WO3,MoO3andIn2O3arefoundtohaveapronouncedsensitivitytogases,suchasH2,NO,NO2,CO,alcoholandotherspecies[4–8].Recently,thedemandsforoxygensensorsarerapidlyincreasing.Oxygenconcentrationisoneofthemostwidelyusedparametersinmanyfields,e.g.tocontroltheair/fuelmixtureinautomobileengines[9,10].Uptillnow,commercializedoxygensensorsemployedthesolidelectrolyteofZrO2[11]basedontheNernstprinciple.Suchsensorshavealsobeenusedtodetecttheoxygencontentinexhausted
0957-4484/08/405504+07$30.00
gasinironandsteelsmelters.However,thistypeofsensorhassomeremarkabledrawbacks:(1)theworkingtemperatureofthesolidelectrolyteisabove1100K;(2)areferenceelectrodeisneededduringtesting,whichisnotsuitabletodetectO2concentrationclosetotheoxygenpartialpressureofthereferenceelectrode;(3)thesensoriscomplexandexpensivetouseandmaintain.Therefore,thedevelopmentofahighlysensitive,portable,lowworkingtemperatureandconvenientsensorishighlydesirableandstillagreatchallenge.
Todevelopbetteroxygensensors,TiO2,SrTiO3andGa2O3withvariousmorphologieshavebeenexplored[12–15].Titaniaasanimportantfunctionalmaterialhasbeenwidelyinvestigatedinbroadareasincludingphoto-watersplitting,dye-sensitizedsolarcells,electronfieldemissionelectrochemicallithiumstorageandgassensing[16–24].However,themaindrawbacksofaTiO2-basedoxygen
1
©2008IOPPublishingLtdPrintedintheUK
Nanotechnology19(2008)405504HFLuetal
Figure1.SEMandTEMimagesofTNTA:(a)and(c)theas-preparedsample,(b)and(d)thesampleafterannealingat450◦Cinairfor2h.
sensorisitslowsensitivityandpoorrecoveryrate[12,15].1DTiO2nanotubearrays(TNTA)areofconsiderableinterestastheyexhibituniquearchitecture,andremarkableandbetterpropertiescomparedtotheirbulkcounterparts.Consideringthenatureofgassensingviatheinteractionofasemiconductingsurfacewithadsorbedgasmolecules[25–27],itisthoughtthatTNTA,grownontitaniumsubstratesbyasimpleandstraightforwardanodizationprocesswiththecharacteristicsofhighlyorderedopentubesandlargespecificsurfacearea,canprovideabundantsitesandchannelsforgasadsorption,diffusionandchemicalreaction.Accordingtoarecentreport,titaniananotubearraysexposedto1000ppmhydrogenexhibitanunprecedentedvariationinresistanceatroomtemperature[28].Becausethesurfaceresistance-controlledmechanismsuitsmostgassensors,itisreasonabletobelievethatTNTAhavethepotentialforhighlysensitiveoxygendetection.Itiswellknownthatoxygenvacanciesexistinn-typesemiconductingtitaniaactingasdonors.Thestructureofamorphoustitaniananotubesismoredisorderedthanthatofcrystallinenanotubes,therebyhavingmanymoredefects(oxygenvacancies)thatcanprovidehighercarrierconcentrationandmoreactivesites.Thismayenhancethesensitivitywhenexposedtooxygen.
Inthiswork,weexploredtheoxygensensingpropertyofamorphousandanataseTNTAatlowtemperaturesoverawiderangeofoxygenconcentrations.TheoxygensensingpropertiesandsensingmechanismofTNTA-basedsensorswerediscussedindetail.
2
2.Experimentaldetails
TiO2nanotubearrayswerepreparedfromatitaniumfoilofapproximately250μminthickness(99.5%purefromAlfaAesar).Potentiostaticanodizationwasperformedinatwo-electrodeelectrochemicalcell,connectedtoaDCpowersourceunderaconstantpotentialof20Vusingaplatinumfoilascounterelectrode.Theelectrolyteconsistedof0.5wt%NH4Fand1.0M(NH4)2SO4indeionizedwater.Theanodicoxidationprocesswasconductedatroomtemperaturefor2h.Theas-preparedTNTAwereamorphous,andanataseTNTAwereobtainedbyannealingtheas-preparedsampleat450◦Cinairfor2hwithaheatingrateof5◦Cmin−1.
Afieldemissionscanningelectronmicroscope(FESEM,LEOSUPRA35)wasusedtoobservethemorphologyoftheTNTA.Anx-raydiffractometer(XRD,RINT2200,CuKα)wasusedtodeterminethecrystallinephase.Transmissionelectronmicroscope(TEM)imagesofTNTAwereobtainedbyaJEOL2010at200kV.Mott–SchottkycurvesweremeasuredbyaPrincetonAppliedResearchPARSTAT2273,usingathree-electrodesystem.
Twoplatinumstrips(10mm×2mm)atadistanceof3mmwerefixedontotheTNTAsurface[15]bytwoquartzglassesandfourscrews.Twoplatinumwiresweresolderedonplatinumsheetswiththeohmicconnectiontoacomputer-controlledcurrent–timemeasurementinstrument(CHI630I)tomeasurethecurrentpassingthroughthenanotubearraysunderconstantpotential.Thereisanoxidebarrierlayer(insulating
Nanotechnology19(2008)405504HFLuetal
Figure2.XRDpatternsoftheas-prepared(curvea)andannealed(curveb)TNTA.
layer)betweenmetallicTiandTNTA,andthisbarrierlayercanpreventcurrentgettingacrossmetallicTi[15].Thevariedconcentrationsoftestgas(oxygen)werecontrolledbytwomassflowcontrollers,andthecarriergasemployedwasnitrogen.ThesensitivitytermSisdefinedas
S=
Rgas−R0
R0
(1)
Figure3.(a)Theresistanceresponseand(b)sensitivityvariationoftheamorphousTNTAunderdifferentoxygenconcentrationsat50◦C.
whereRgasandR0representtheresistanceofthesensorsinmixedgasesincludingoxygenandnitrogen,respectively.
3.Resultsanddiscussion
SEMimagesoftheas-preparedTNTAandannealedTNTAfromtopandcrossviewsareshowninfigures1(a)and(b).BothoftheTNTAareverticallyalignedonaTifoilsubstrate.Itisclearthatthesurfacestructureandouterdiameteroftheamorphousandannealedsamplesareverysimilar.Thenanotubeshaveauniformouterandinnerdiameterdistributionaround150and110nm.TheTNTAarecomposedofwell-alignednanotubesofabout2.3μminlength.TEMimagesoftheas-preparednanotubesandannealednanotubesareshowninfigures1(c)and(d).TheinsertedSAEDpattern(figure1(c))provestheamorphousnatureofas-preparedsample,Figure1(d)indicatesthepolycrystallinestructureoftheannealednanotubes.WecanseethatthemorphologyofTNTAremainedthesameastheoriginalafterheattreatment.Thethicknessofthetubewallisapproximately20nm.XRDpatternsoftheas-preparedandannealedTNTAareshowninfigure2.Thepeaksofthelatter,whichwereobtainedbyannealingtheas-preparedsampleat450◦Cinairfor2h,canbeindexedasamainanatasephasecorrespondingto2θ=25.3◦seenforthe(101)crystalorientation.Comparedtotheamorphousnatureoftheas-preparedTNTA,theannealedTNTAshowananatasephaseplusanegligiblerutilephase.
Generally,nanostructuredTiO2usedforgassensing(includingH2,CO,NO2,CH4,etc)shouldbeannealedinairoroxygenatmosphereatacertaintemperaturepriortotestinginordertoformacrystallinestructure[29–32].AtransformationofamorphousTNTAintoanataseand(or)
3
rutileTNTAoccursduringtheannealingprocess.CrystallineTiO2ishighlyadvantageousforH2detection,butforoxygencrystallineTiO2exhibitsaverypoorrecoveryproperty[15].Therefore,wemainlyfocusedontheinvestigationofthegassensingresponsesofamorphousTNTAforoxygenatlowtemperatures.
Figure3(a)showstheisothermalresponseoftheelectricalresistanceoftheamorphousTNTAsensorataworkingtemperatureof50◦Cwhentheoxygenconcentrationisvariedfrom1.2%to4.0%.Thesampleholderwasflushedwithnitrogenaftereachexposuretooxygen.TheresistanceofTNTAincreasedinthepresenceofoxygenandrecoveredinnitrogen.Thesensitivityofthissensorintheconcentrationrangestudiedisplottedinfigure3(b)andthereisagoodlinearrelationshipwithoxygenconcentrationsat50◦C.
TocheckthebehaviouroftheamorphousTNTAsensorinawiderconcentrationrangeathighertemperatures,experimentswerecarriedoutat100,150,200,250and300◦C,whiletheconcentrationofoxygenvariedfrom200ppmto20%.Theresistanceresponseatthetemperatureof100◦CoftheamorphousTNTAsensorforoxygenisshowninfigures4(a)–(c).ItcanbeseenthatthereareremarkablechangesintheresistanceofTNTAwithoutobvioushysteresis,andafternitrogenflushingineverycycletheresistanceregainsitsoriginalvalue.ThesensitivityofamorphousTNTAwasstudiedatdifferenttemperaturesasshowninfigure5(a).InthisfigurewecanseethatthesensitivityofamorphousTNTAroughlyincreaseswhentemperatureincreases,butdoes
Nanotechnology19(2008)405504HFLuetal
Figure4.ElectricalresistancechangeoftheamorphousTNTAwhenexposedtothreedifferentconcentrationrangesat100◦C:(a)200–1980ppm,(b)6.1–9.5,(c)1.8%–20.0%.
notexhibitanylinearcorrelationwithoxygenconcentrationsandirregularlyfluctuatesattemperaturesabove180◦C.Furthermore,theresistanceresponsesabove180◦Cshowaverypoorrecoverypropertyaccordingtopresentresults.However,at100◦C,highsensitivity,anexcellentrecoverypropertyandalinearrelationshipwithoxygenconcentrationscanbeobserved.AtthistemperatureanamorphousTNTAsensorexhibitssharpvariationofelectricalresistanceuptotwoordersofmagnitude(∼102),muchhigherthanthatofothermetal-oxidesensorssuchasGa2O3thinfilm(∼1.5)[11],nanoscaleTiO2thickfilm(∼1.5)[12]andSrTiO3thickfilm(∼6.5)[13].Theseperformancesrepresenthighersensitivity,betterrecoveryandlinearcorrelationcomparedtothesemetal-oxidesemiconductorsforoxygensensingreportedintheliterature[12,13,15].
Meanwhile,theannealedTNTAsamplewasalsotestedat100◦C.ThesensitivityofanataseTNTAhasnolinearrelationshipwithoxygenconcentrationsandismuchlowerthanthatoftheamorphoussensor(figure5(b)).ItisobviousthatthesensingpropertyofamorphousTNTAismuchbetterthanthatofannealedTNTAasanoxygensensorat100◦C.Vargheseetal[15]reportedthattheresistanceoftheTiO2nanotubesincreasedwhenexposedto1%oxygenat290◦C,butcouldnotrecovertoitsoriginalelectricalconductivityevenafterseveralhours’exposureinnitrogen.Soitcanbeconcludedthat,atlow(≈100◦C)andrelativelyhigh-temperature(>150◦C),bothamorphousandannealedTNTAexhibitdifferentrecoverybehavioursafterexposuretooxygen.
Ingeneral,thechangesinresistanceofmetal-oxidesemiconductorgassensorswhenexposedtodifferent
4
atmospheresareduetoachargecarrierexchangeofadsorbedgaswiththeoxidesurface[32].InordertounderstandthesuperiorityofanamorphousoveranataseTNTAsensorinresponsetooxygenatlowtemperatureandthedissimilarresponsesofTNTAatdifferenttemperatures,weshouldconsidertheuniqueinteractionstowardtheseconditions.AsTiO2isann-typesemiconductor,itselectricalconductivityreliesonfreeelectronssuppliedbythedonorenergylevel,whichisbelowtheconductionbandminimuminthebandgapoftitaniacausedbyoxygenvacanciesorinterstitialtitaniumatoms.WhiletheTNTAareexposedtooxygen-containingatmospheres,oxygenmoleculesareadsorbedontheTiO2surface,thenformingsomeanionswhichactasacceptorsbytrappingelectronsfromthenanotubeconductionbandandcreatingadepletionregiononthenanotubesurfacethatenhancesitselectricalresistance[28].Ithasbeenproposedthattheadsorbedoxygenmoleculestransformtovariousanionspeciesbytransferringelectronsfromthemetaloxidetothechemisorbedoxygenaccordingtothefollowingprocesses[33]:
−
O2(gas)⇔O2(ad)⇔O−2(ad)⇔O(ad)
⇔O2−(ad)⇔O2−(lattice).(2)
Intheseprocesses,thereexistsatransitiontemperaturebelowwhichoxygenadsorbedonthesurfaceismainlyintheformofO−2,whereasabovewhich,chemisorbedoxygendominatesintheformofO−andO2−[34].Thistransitiontemperatureisapproximately450K(≈180◦C)formetal-oxidesurfaces[34].
Nanotechnology19(2008)405504HFLuetal
relationshipbetweencarrierconcentrationandspacechargelayercapacitancetermCSCcanbedefinedas[35,36]
12kT
E−Efb−=(3)2εε0eNdeCSCwherekisBoltzmann’sconstant(1.38×10−23JK−1),ε0the
vacuumpermittivity(8.85×10−14Fcm−1),etheelementarycharge(1.6×10−19C),εthepermittivityofTiO2(foranataseis48),NdthedonordensityandTtheKelvintemperature.FromtheslopesoftheMott–SchottkyplotsintheirlinearrangetherecanbecalculatedNd(donordensityorcarrierconcentration)ofamorphousandanataseTNTA,Nd(amorphous)=1.149×1019cm−3>Nd(anatase)=4.022×1017cm−3.Theamorphousnanotubestructureismoredisorderedthanthatofanatasenanotubes,therebyhavingmanymoredefects(oxygenvacanciesorinterstitialpositions)whichprovideabundantlocaldonorenergylevels.Thedonorenergylevelsenhanceconductivity[34],i.e.concentrationofchargecarriers.Thelargerthebaseconcentrationofchargecarriers(electrons),themoreitchangesafterexposuretooxygen.Thisleadstohighersensitivityforanamorphousthanananatasesensortothesameoxygen-containingatmospheres,andbetterlinearcorrelationwithoxygenchangeoverawiderconcentrationrange.
WhentheTNTAsensorsworkat100◦C,oxygenischemisorbedintheformofO−2,leadingtoanincreaseofresistance.ThereisareasonablemodelinwhichO−2speciesaremainlyboundinthevicinityofvacancies[3].Onremovingtheoxygenatmosphere,oxygendesorptiontakesplaceandelectronstransferbacktonanotubes,recoveringtotheoriginalresistanceofthenanotubes.However,theconditionisdifferentathighertemperatures.Athighertemperatures,O−andO2−ionsexistasprevailingspecies,causingare-oxidationofthecrystalthatleadstorestructuringofthewholesurface[3].BecausetheenergyofO2−inalatticesiteisestimatedtobemuchlower(about20eV)thanthatinanadsorbedstate[37],O2−(ad)isunstableandhastobestabilizedbydiffusingintothelattice.Thischangereducesdefects(oxygenvacancies)whichprovideabundantlocaldonorenergylevelsinamorphousTNTA,i.e.chargecarrierconcentrationisdecreased.Onremovingoxygen,thereductionofthelatticecannotoccurquickly,hencethetimeforasensortoregain
Figure5.(a)ThesensitivityofamorphousTNTAat50,100,150,250and300◦Cfordifferentoxygenconcentrations.(b)ThesensitivityoftheamorphousTNTAandannealedTNTAcorrespondingtodifferentoxygenconcentrationsat100◦C.
AstothedominantmechanismbehindthephenomenathatamorphousTNTAhashighersensitivityandabetterlinearrelationshipwithoxygenconcentrationsthanthoseofanataseTNTA,itisreasonablyconsideredthatthekeypointisthechangeofchargecarrierconcentrationonthenanotubesurface.BasedontheMott–Schottkyprinciple,thecarrierconcentrationcanbeobtainedbyelectrochemicallymeasuringthespacechargelayercapacitance.TheMott–SchottkyplotsofamorphousandanataseTNTAattheACfrequencyof1kHzin0.25MNa2SO4aqueouselectrolyteareshowninfigure6.AccordingtotheMott–Schottkyprinciple,the
Figure6.Mott–Schottkyplotsof(a)amorphousTNTAand(b)anataseTNTAin0.25MNa2SO4,recordedatafrequencyof1kHz.
5
Nanotechnology19(2008)405504HFLuetal
itsoriginalconductivityisverylong[15].ThisisaplausiblereasonwhytheTNTAsensorsarerecoverableforcycledchangesbetweenoxygenandnitrogenatlowtemperatureunderthetransitiontemperature,butathighertemperaturetheybecomeunrecoverable.
4.Conclusion
Titaniananotubearrayswerepreparedbyanodizationandinvestigatedfortheirpotentialapplicationinoxygensensors.Theas-preparedamorphousTNTAshowremarkablerecoverableresponsestooxygenatalowtemperatureof50◦C.At100◦Cthesensingproperties(sensitivity,recovery,linearcorrelationwithoxygenconcentrationandresponserange)arethebestandthelowestdetectableconcentrationis200ppm.Interestingly,theoxygensensitivityofTNTAismuchbetterthanthatofothermetal-oxidesensorssuchasnanoscaleTiO2thickfilm,SrTiO3thickfilmandGa2O3thinfilm.TheseresultsdemonstratethatamorphousTNTAstructurescanbeverypromisingcandidatesforoxygensensors,particularlyatlowtemperatures.
Acknowledgments
TheauthorsthankProfessorYingLiandDrLiLiufortheirsupportoftheMott–Schottkycurvemeasurements.ThisworkwassupportedbytheNationalScienceFoundationofChina(50602011).
References
[1]SeiyamaTKA,FujiishiKandNagataniM1962Anew
detectorforgaseouscomponentsusingsemiconductivethinfilmsAnal.Chem.341502–3
[2]MoseleyPT1992Materialsselectionforsemiconductorgas
sensorsSensorsActuatorsB6149–56
[3]DieboldU2003Thesurfacescienceoftitaniumdioxide
Surf.Sci.Rep.4853–229
[4]KolmakovA,KlenovDO,LilachY,StemmerSand
MoskovitsM2005EnhancedgassensingbyindividualSnO2nanowiresandnanobeltsfunctionalizedwithPdcatalystparticlesNanoLett.5667–73
[5]GalatsisK,LiYX,WlodarskiW,CominiE,SberveglieriG,
CantaliniC,SantucciSandPassacantandoM2002
ComparisonofsingleandbinaryoxideMoO3,TiO2andWO3sol–gelgassensorsSensorsActuatorsB83276–80[6]ZhangDH,LiuZQ,LiC,TangT,LiuXL,HanS,LeiBand
ZhouCW2004DetectionofNO2downtoppblevelsusingindividualandmultipleIn2O3nanowiredevicesNanoLett.41919–24
[7]WangZL2004Functionaloxidenanobelts:materials,
propertiesandpotentialapplicationsinnanosystemsandbiotechnologyAnnu.Rev.Phys.Chem.55159–96[8]WanQ,LiQH,ChenYJ,WangTH,HeXL,LiJPand
LinCL2004FabricationandethanolsensingcharacteristicsofZnOnanowiregassensorsAppl.Phys.Lett.843654–6[9]DuttaPK,GinwallaA,HoggB,PattonBR,ChwierothB,
LiangZ,GoumaP,MillsMandAkbarS1999Interactionofcarbonmonoxidewithanatasesurfacesathightemperatures:optimizationofacarbonmonoxidesensorJ.Phys.Chem.B1034412–22
[10]WuMT,YaoX,YuanZH,SunHT,WuWC,ChenQHand
XuGY1993Effectofnoble-metalcatalystontitaniaexhaust-gasoxygensensorSensorsActuatorsB14491
[11]OgitaM,HigoK,NakanishiYandHatanakaY2001Ga2O3
thinfilmforoxygensensorathightemperatureAppl.Surf.Sci.175721–5
[12]GaoL,LiQ,SongZandWangJ2000Preparationof
nano-scaletitaniathickfilmanditsoxygensensitivitySensorsActuatorsB71179–83
[13]HuY,TanOK,CaoWandZhuW2004Alowtemperature
nano-structuredSrTiO3thickfilmoxygengassensorCeram.Int.301819–22
[14]BabanC,ToyodaYandOgitaM2005Oxygensensingathigh
temperaturesusingGa2O3filmsThinSolidFilms484369–73
[15]VargheseOK,GongDW,PauloseM,OngKGand
GrimesCA2003HydrogensensingusingtitaniananotubesSensorsActuatorsB93338–44
[16]MorGK,ShankarK,PauloseM,VargheseOKand
GrimesCA2005EnhancedphotocleavageofwaterusingtitaniananotubearraysNanoLett.5191–5
[17]MohapatraSK,MisraM,MahajanVKandRajaKS2007
Designofahighlyefficientphotoelectrolyticcellforhydrogengenerationbywatersplitting:applicationofTiO2−xCxnanotubesasaphotoanodeandPt/TiO2
nanotubesasacathodeJ.Phys.Chem.C1118677–85
[18]MorGK,ShankarK,PauloseM,VargheseOKand
GrimesCA2006Useofhighly-orderedTiO2nanotubearraysindye-sensitizedsolarcellsNanoLett.6215–8
[19]PauloseM,ShankarK,VargheseOK,MorGK,HardinBand
GrimesCA2006Backsideilluminateddye-sensitizedsolarcellsbasedontitaniananotubearrayelectrodesNanotechnology171446–8
[20]GrimesCA2007Synthesisandapplicationofhighlyordered
arraysofTiO2nanotubesJ.Mater.Chem.171451–7
[21]MiyauchiM,TokudomeH,TodaY,KamiyaTand
HosonoH2006ElectronfieldemissionfromTiO2nanotubearrayssynthesizedbyhydrothermalreactionAppl.Phys.Lett.89043114
[22]ZhangH,LiGR,AnLP,YanTY,GaoXPandZhuHY2007
ElectrochemicallithiumstorageoftitanateandtitaniananotubesandnanorodsJ.Phys.Chem.C1116143–8
[23]VargheseOK,MorGK,GrimesCA,PauloseMand
MukherjeeN2004Atitaniananotube-array
room-temperaturesensorforselectivedetectionofhydrogenatlowconcentrationsJ.Nanosci.Nanotechnol.4733–7
[24]LiuG,LiF,WangDW,TangDM,LiuC,MaXL,LuGQ
andChengHM2008Electronfieldemissionofanitrogen-dopedTiO2nanotubearrayNanotechnology19025606
[25]ZhuYT,WangZLandLangdonTG2007Nanostructured
materials—processing,structures,propertiesandapplicationsJ.Mater.Sci.421401–2
[26]LinHM,KengCHandTungCY1997Gas-sensingproperties
ofnanocrystallineTiO2Nanostruct.Mater.9747–50
[27]ChenZG,ZouJ,LiuG,LuHF,LiF,LuGQandChengHM
2008Silicon-inducedorientedZnSnanobeltsforhydrogensensitivityNanotechnology19055710
[28]PauloseM,VargheseOK,MorGK,GrimesCAandOngKG
2006Unprecedentedultra-highhydrogengassensitivityinundopedtitaniananotubesNanotechnology17398–402
[29]VargheseOK,GongDW,PauloseM,OngKG,DickeyEC
andGrimesCA2003ExtremechangesintheelectricalresistanceoftitaniananotubeswithhydrogenexposureAdv.Mater.15624–7
6
Nanotechnology19(2008)405504HFLuetal
[30]HanKR,KimCS,KangKT,KooHJ,KangDIand
JingwenH2002StudyonsensingpropertiesoftinoxideCOgassensorwithlowpowerconsumptionSensorsActuatorsB81182–6
[31]RuizAM,SakaiG,CornetA,ShimanoeK,MoranteJRand
YamazoeN2003Cr-dopedTiO2gassensorforexhaustNO2monitoringSensorsActuatorsB93509–18
[32]HoeferU,FrankJandFleischerM2001Hightemperature
Ga2O3-gassensorsandSnO2-gassensors:acomparisonSensorsActuatorsB786–11
[33]BatzillMandDieboldU2005Thesurfaceandmaterials
scienceoftinoxideProg.Surf.Sci.7947–154[34]KohlD1989Surfaceprocessesinthedetectionofreducing
gaseswithSnO2-baseddevicesSensorsActuators1871–113
[35]SchmukiP,BohniHandBardwellJA1995Insitu
characterizationofanodicsilicon-oxidefilmsbyac-impedancemeasurementsJ.Electrochem.Soc.1421705–12
[36]HakikiNE,BoudinS,RondotBandBeloMD1995
Theelectronic-structureofpassivefilmsformedonstainless-steelsCorros.Sci.371809–22
[37]BielanskiAH1979Oxygenincatalysisontransitionmetal
oxidesCatal.Rev.Sci.Eng.191–41
7
因篇幅问题不能全部显示,请点此查看更多更全内容